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ABSTRACT

Reinforcement Learning typically struggles in environ-
ments with sparse rewards. In this study we utilize an
intrinsic reward function to help guide the agent in these
scenarios, defined by how well the agent can predict the
consequences of its own actions. We train multiple agents
asynchronously using deep Q-learning via a convolutional
neural network, investigating the impact of intrinsic moti-
vation on how they learn. We test the model on a small
subset of Atari games; in particular, we aim to improve
performance of the agent in Montezuma’s Revenge, a
game which suffers from extremely sparse rewards. We
have shown that the influence of intrinsic motivation can
have positive benefit on the learning of the agent, however
can be temperamental to hyper-parameter tuning. Whilst
Montezuma’s Revenge proved again too difficult, we
have shown significant progress can made within Ms. Pac-
Man.

1. INTRODUCTION

Reinforcement Learning (RL) is concerned with how
agents ought to take actions to maximize their expected
utility in the face of an uncertain environment; that is, in
the setting where both the reward and the transitions are
unknown. Specifically, model-free learning attempts to es-
timate the optimal policy and its expected utility by min-
imizing the distance between the current prediction and
a target function. In this setting, algorithms must find a
balance between exploration and exploitation when choos-
ing a policy from which to collect data from learning, and
they receive rewards or penalties along this decision mak-
ing process.

In 2013, DeepMind [6] incorporated deep learning into Re-
inforcement Learning (RL) to solve Atari arcade games. In
particular, they implemented a variant of Q-learning with
the value function modeled via a deep convolution neural
network (CNN) trained on the raw pixels input. Using the
score of the arcade game as reward feedback, the model
was able to gain above human expert-level performance on
roughly half of the Atari games.

Despite this positive performance on most games, the deep
Q-learning (DQL) algorithm struggled in some instances,
especially in the infamously difficult Montezuma’s Re-
venge. In this game, the agent must navigate multiple
rooms filled with traps and does not receive a positive re-
ward until they reach a key at the end of each level; in other
words, they receive only sparse reward signals. As a result,

this learning scheme struggled to match human-level per-
formance, even after hundreds of millions of frames. A
possible solution to this problem is the design of a reward
function that provides feedback along the route, allowing
for faster learning of optimal policies. However, in com-
plex environments it is unclear how this reward function
should be defined and simplistic models could lead to con-
vergence towards the wrong goal.

Curiosity or uncertainty of the agent is commonly utilized
to help construct the intrinsic reward function. If an agent
is unable to predict well the next state given the current
state and the action about to be taken, then the error be-
tween true and predicted next state form an incentive to
encourage exploration. State prediction on pixels is diffi-
cult and it is unclear if predicting features at this low-level
is helpful to the agent; thus instead an encoded state is uti-
lized for predictions. Instead of simply training an encod-
ing of the whole state, we can train the model so that it
captures only the data most relevant to the agent’s actions
and success. This allows the learner to remain ignorant of
items in the environment that are irrelevant to their objec-
tive.

Another hindrance to DQL is the large amount of time
it takes to train the learner. In particular, in their orig-
inal paper, Google trained the agents for a week over
50M frames using heavily specialized hardware. Numer-
ous methods have been proposed to overcome these com-
putational issues. Mnih et. al [5] proposed a framework
for deep reinforcement learning that uses asynchronous
gradient descent for optimization of deep neural network
controllers. They showed that the use of several agents
learning in parallel has a stabilizing effect on training that
allows deep learning and reinforcement learning to in-
teract successfully while reducing the computational bur-
den significantly. Further, their methodology is applica-
ble to both on-policy methods, such as SARSA, n-step
methods, and actor-critic models, and off-policy methods,
such as Q-learning. Their best performing method, Asyn-
chronous Advantage Actor-Critic (A3C), surpassed Deep-
Minds’s DQL while training for half the time on a sin-
gle machine with a standard multi-core CPU and, hence,
became the current state-of-the-art deep RL algorithm for
problems with complex state and action space.

We have implemented an asynchronous variant of Google
DeepMind’s DQL algorithm with guided exploration
through a curiosity-driven intrinsic reward function. In
particular, our model is composed of two components: a
‘student’ that interacts directly with the environment and



a ‘teacher’ that guides the exploration through a novelty
intrinsic reward. The goal of the agent is to maximize
the expected augmented reward over all time, where the
augmented reward is a linear combination of the extrinsic
reward provided by the environment and intrinsic reward
provided by the teacher.

We experiment with parameter configurations and across
several games to attain optimal performance. We show
that our algorithm can yield in faster learning in the Atari
games already mastered by DQL, however fine tuning of
hyper-parameters is needed to understand how the intrin-
sic reward should decay over time. In particular, the rela-
tionship between intrinsic and extrinsic reward is critical
but if tuned correctly we show it can accelerate the initial
learning of the agent.

2. PREVIOUS WORK

The problem of sparse rewards has been identified and ap-
proached from multiple angles in the last few years. In
a follow-up to their original paper, DeepMind [1] tackled
this problem through building surrogates of the extrinsic
reward to drive curiosity in the agent. This approach, of-
ten referred to as intrinsic motivation, uses novelty signals
such as prediction error, value error, or learning progress
to incentivize exploration in a reinforcement learning set-
ting.

Christiano et al. [2] utilized human feedback in the form of
simple policy preference decisions to help guide the agent
in solving complex tasks. This methodology is somewhat
related to that of inverse reinforcement learning and ap-
prenticeship learning, where agents observe demonstra-
tions of the desired task and learn a reward function to train
against [9], which Ng et al. [8] showed is possible for the
task of autonomous helicopter piloting.

Wernsdorfer and Schmid [13] proposed a variant of deep
model-based RL that allows the agent to learn arbitrar-
ily abstract hierarchical representations of its environment.
The non-Markovian policies generated were shown to be
successful in situations where the relevant states of a task
are not known in advance.

Liang et al. [4] suggested a generic representation of a
game in the Atari learning environment using ‘blobs’ of
pixels, performing particularly well on games with little
reward signal. Kaplan et al. [3] successfully introduced
defined input language instructions to Montezuma’s Re-
venge. However, exploration in these domains was still
often implemented by simple ε-greedy algorithms.

Stadie et al. [12] investigated more sophisticated ex-
ploration strategies such as Boltzmann exploration and
Thompson sampling. Based on ideas from intrinsic mo-
tivation, they proposed a method where a concurrently
learned model assigns exploration bonuses to the agent, in-
centivizing exploration and novelty. Whilst improving per-
formance on numerous games, the algorithm still scored

zero in Montezuma’s Revenge, showing severely sparse-
reward environments remain a step too far.

Pathak et. al [10] use the error in the agent’s ability to pre-
dict its own actions to motivate exploration. They train the
state encoder by minimizing the loss of a network which
predicts the action that took the agent from one encoded
state to the next. Through this, they are able to define state
embeddings that are relevant to the actions that the agent
takes, rather than generic state embeddings as in Stadie et
al., which also encode a lot of information irrelevant to the
learner’s success.

While there has been a lot of research in intrinsic moti-
vation as a guided exploration technique, we have yet to
find a paper that combines asynchronous agents with in-
trinsic motivation to alleviate the problem of sparse re-
wards.

3. METHODS

This section includes a detailed description of our Asyn-
chronous version of Deep Q-learning with Intrinsic Mo-
tivation (AIM-DQL). We start by describing the environ-
ment that the agent threads will interact with and follow
by outlining our proposed algorithm.

3.1 Environment and Pre-processing

We run all experiments with Atari 2600 1 games, a se-
lection of classic arcade games ranging in level of diffi-
culty. The environment emulator is provided by OpenAI
gym 2 . In this environment, extrinsic rewards correspond
to changes in the total point score of the game, whilst the
end of an episode occurs either when the agent beats the
game, or dies. The states are produced by the screen pixel
output of the arcade game, with no hand-crafted features.
Following Mnih et al. [7], we construct our states by pre-
processing the 210 × 160 raw RGB output from the emu-
lator to reduce its dimensionality. Specifically, we convert
the pixels to grayscale and rescale the output to 84 × 84.
Further, to allow capturing velocity, each of our states con-
sists of m = 4 consecutive previous preprocessed frames,
resulting in states of dimension 4× 84× 84.

3.2 Asynchronous Intrinsic Motivation DQL
(AIM-DQL)

We now present AIM-DQL, an asynchronous variant of
deep reinforcement learning model, where independent
agent workers concurrently train a ‘student’ model that in-
teracts directly with the environment and a ‘teacher’ model
that guides exploration through a novelty intrinsic reward.
As suggested by its name, our algorithm is composed of

1 The Atari 2600 is a home video game console released by Atari, Inc.
in 1977 that was wildly successful for decades. The 2600 was typically
bundled with two joystick controllers, a conjoined pair of paddle con-
trollers, and a game cartridge: initially Combat, and later Pac-Man.

2 https://github.com/openai/gym



three components: Asynchronous (A), Intrinsic Motivation
(IM), and Deep Q-Learning (DQL), which we describe in
detail below.

3.2.1 Deep Q-Learning

This algorithm is a variation of Q-learning where, at each
state s the agent (player) selects an action a ∈ A from the
set of legal actions (e.g. up, down, right, left, jump) and
passes it to the environment (Atari emulator), who updates
its internal state s → s′ and the game score. The goal of
the agent is to maximize its future expected utility. In par-
ticular, this model-free approach estimates the action value
functionQopt(s, a) = maxa∈AQ(s, a) through a CNN, us-
ing stochastic gradient descent to update the weights over
loss

L(θ) = Es,a,r,s′

[
(Qopt(s, a)− (r + γQopt(s

′, a′))
2
]
.

Previous attempts to use a non-linear function to estimate
the value function had led to instability. To help achieve
stability a target network is created as a copy of the pre-
dictive network to calculate Vopt(s

′) = Qopt(s
′, a′). This

target model is updated infrequently by copying across the
weights from the predictive network.

3.2.2 Asynchronous Agents

We execute multiple agents in parallel, on multiple in-
stances of the environment. This parallelization has two
objectives: on one hand, it decorrelates the agent’s data
into a more stationary process and has parallel agents em-
ploying different exploration policies, which enables it to
achieve stability; and on the other hand, and most im-
portantly for our purposes, reduces the training time to
roughly linear in the number of parallel actor-learners. The
decorrelation removes the need for an experience replay
mechanism, which is both expensive in memory and com-
putation.

Each agent updates the prediction network with mini-
batches of experiences learned. Importantly, we can use
Hogwild! [11] style updates and let each agent update the
network without any thread locking. Each thread is pre-
sented with its own exploration policy to encourage dis-
tinct exploration.

3.2.3 Intrinsic Reward

We drive curiosity through guided exploration to enable
the agent to explore large parts of its environment and learn
skills that might be useful in the games where myopic ex-
ploration fails. Our approach takes inspiration from both
the work of Stadie et al. [12] and Pathak et al. [10].

We model the intrinsic reward, r(int), as the prediction error
of a dynamic predictive model that takes an encoded ver-
sion of a state s and the agent’s action a and attempts to
predict an encoded version of the successor state s′. The
intuition behind this idea lies in the fact that when we don’t

Parameters:
β, γ, Tmax, T p, T t, Tm

Global Variables:
T , θp, θt, θm

while T < Tmax do
Set:

T ← T + 1
Bp,Bm ← ∅
s← sstart

while not IsEnd(s) do
Choose action a that maximizes Q̂opt(s; θ

p)
Take action a and observe r(ext), s′

Encode s and s′ to get φ(s) and φ(s′)
Compute e← ||φ(s′)− f(φ(s), a; θm)||2
Normalize e using constant decay to get r(int)

Set r ← r(ext) + βr(int)

Compute y ← r + γV̂opt(s
′)

Add (s, a, y) to batch Bp
Add (s, a, s′) to batch Bm
if T mod T p == 0 then

Use Bp to update θp

Set Bp ← ∅
end
if T mod T t == 0 then

Update target weights θt ← θp

end
if T mod Tm == 0 then

Use Bm to update θm

Set Bm ← ∅
Optionally, update φ

end
s← s′

end
end
Algorithm 1: Asynchronous Intrinsic Motivation DQL:
pseudo-code for each worker thread. T is the global
frame counter; Tmax is the maximum number of frames;
T p, T t, Tm the update frequencies for the predictive
model, target model, and teacher model respectively;
θp, θt, θm are the weights for the predictive, target, and
teacher model respectively.

understand a state-action pair well enough to make accu-
rate predictions, the error will be high, and hence explo-
ration of this pair will be encouraged.

Formally, let φ(s) denote the encoding of state s and
f(φ(s), a) the state predictor for φ(s′). At every step, the
teacher model will receive a tuple (s, a, r(ext), s′) from the
emulator, calculate representations φ(s) and φ(s′), use the
predictive model to estimate φ(st+1) from φ(st) and at,
calculate the intrinsic reward r(int) as the prediction error
||φ(s′) − f(φ(s), a)||2, and finally compute the modified
reward r = r(ext) + βr(int), where r(ext) is the game score
update provided by the Atari emulator. The teacher model
will then send the tuple (s, a, r, s′) to the student, who will
use this information to update its own networks weights.
The pseudo-code can be seen in Algorithm 1.



Figure 1: AIM-DQL network architecture. IM is the intrinsic motivation mechanism, seen in detail on the right.

The state encoder is trained in a manner such that only
information relevant for predicting the actions of the agent
is represented in the output. In this manner we hope to
remove the effect of features of the environment which are
out of the agent’s control and which have little impact on
their success.

This is achieved by including a third neural network ar-
chitecture which takes as input the encoded state, the en-
coded next state and predicts the action which took the
agent from state to the next. Since the action space is en-
coded into one-hot vector representations, we utilize cross-
entropy loss between predicted and true action to update
the weights of the action predictor and encoder. To avoid
beginning the agent with a completely ineffective encod-
ing network, the teacher is trained for a number of frames
whilst the agent follows an epsilon-greedy strategy, before
transitioning to teacher-guided exploration. A diagram of
the architecture of the full model can be seen in Figure
1.

4. EXPERIMENTS

For our experiments, we trained our models on a sub-
set of the Atari 2600 suite: Space Invaders, Ms. Pac-
Man and Montezuma’s Revenge. We choose this se-
lection of games because they grant us a spread of differ-
ent reward structures on which to evaluate our algorithm.
Space invaders and Ms. Pac-Man more immediate re-
ward structure allowed us to calibrate our baseline mod-
els with those implemented by DeepMind. Montezuma’s
Revenge, due to it’s harsher, sparse reward environment,
serves as the objective on which we would like our algo-

rithm to perform well on. If the teacher model can success-
fully create subgoals to guide the student in this game, we
expect it to perform well in other, less difficult games. We
experiment using both asynchronous DQL (A-DQL), and
with intrinsic motivation (AIM-DQL) included. It must be
noted that since we trained A-DQL and AIM-DQL using
CPUs and GPUs respectively, we were training and tweak-
ing the models concurrently. As such, whilst written in a
sequential manner below, it was not the case due to time
limitations that all A-DQL optimizations were completed
before we began testing AIM-DQL.

4.1 Experimental Setup

Following Mnih et al. [7] the Q-value network is a con-
volution network consisting of three convolutional layers
followed by two fully connected layers. The first convolu-
tional layer convolves 32 filters of 8×8 using a stride of 4,
the second layer convolves 64 filters of 4× 4 with stride 2,
and the third layer convolves 64 filters of 3× 3 with stride
1. All convolutional layers use a ReLU activation func-
tion. The first dense layer utilizes 512 units with a ReLU
activation function. The final layer uses a linear activation
function onto the number of possible actions.

The encoding of the state uses the same architecture with-
out the final dense layer; thus, an encoded state corre-
sponds to a 512 dimensional vector. The action pre-
dictor utilized to update the encodings is a two layer
fully-connected network. The encoded state and encoded
next state are concatenated together before being passed
through a first dense layer of 256 units with ReLU activa-
tion. This is followed by a second dense layer with soft-
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Figure 2: Learning curves for 40M frames using the A-DQL implementation.

max activation onto the number of possible actions. The
encoder is then trained via cross-entropy loss.

The teacher model attempts to predict the next encoded
state given the current encoded state and action using a
two-layer fully-connected network. The first dense layer
consists of 256 units with ReLU activation, whilst the sec-
ond layer then outputs to 512 units, the size of the encoded
representation, via a linear activation. The teacher model
is then trained via Euclidean loss.

For A-DQL we use an epsilon-greedy policy to encourage
exploration. Each thread is assigned a final epsilon value
as stated in [5], and after an initial period of 50,000 frames
random play the ε value is linearly annealed to its final
value. In AIM-DQL the agent trains under epsilon-greedy
strategy for 500,000 frames to initially train the encoder
before switching to teacher-guided exploration. After ini-
tial experimentation we found that the optimal number of
threads is equal to the number of cores available on the
computing node. In line with resources available to us, for
CPU training we thus utilized 16 threads to train models
whilst for GPU training we used 12 threads.

For each game we ‘clip’ the extrinsic rewards, that is, we
restrict all extrinsic rewards to exist within [−1, 1]. We im-
plement this so that our model can be generalized to all
the games in the Atari suite, as the order of magnitude of
the scores varies significantly between the games. The in-
trinsic reward is similarly standardized to [0, 1] through di-
vision by the maximum state prediction error observed in
the experiment. Over time exploration should be discour-
aged as the agent learns more optimal games. How the
intrinsic reward should decay over time was an unknown
that needed to be tuned. To aid this, we experiment be-
tween allowing natural decay of intrinsic reward, formed
through the natural decrease in state prediction over time,
and implementing a hard-coded decay constant which lin-
early decays the intrinsic reward over time. That is, if the
error from the intrinsic model is given by e then we nor-
malize over the maximum error and some decay parameter
δ,

en =
en

maxm≤n em
δ.

Similarly to epsilon-greedy, δ begins at 1 and linearly

anneals down to some final value over some period of
frames.

To allow the agent to observe more frames, OpenAI gym
implements a frame skipping technique where each action
is repeated k times, where k is randomly sampled from
{2, 3, 4}. We set the discount rate as γ = 0.99.

We use the RMSProp optimization algorithm to update all
models with learning rate η = 0.00025 and momentum
γm = 0.95. We update the prediction network in mini-
batches of 32 frames unless otherwise mentioned and up-
date the target network every 50,000 frames. In AIM-
DQL the teacher and encoder are updated every 1,000
frames.

4.2 A-DQL

We began by implementing the A-DQL model proposed
by Mnih et al [5] in Tensorflow 3 as described in Sec-
tion 3.2.2.

4.2.1 Initial Experiments

The A-DQL model is trained for 40M frames over the cho-
sen subset of three games. A smoothing curve of the total
reward per episode attained by the workers over time can
be seen in Figure 2. After this training period the agent’s
learnt policy was evaluated over 200 games. The scores
achieved and reported scores from previous research can
be seen in Table 1.

From the plots we observe that the model is certainly
learning for both Space Invaders and Ms. Pac-Man,
as it makes steady improvements to its reward over the
episodes. As expected, Montezuma’s Revenge does not
learn anything over the 40M frames, with the sparse reward
structure unable to guide the agent to any positive reward
consistently. Both Ms. Pac-Man and Space Invaders
observe a very rapid increase in the beginning; however
this is followed by a decrease in performance from just

3 http://tensorflow.org/
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before the 20M frame mark, where the agent begins ‘un-
learning’ whatever information they learned to get him to
that point.

4.2.2 Optimizations

The scores achieved in the evaluation are well-below the
achieved scores of DeepMind. For this first implementa-
tion we did no hyper-parameter tuning, using the reported
hyper-parameters from previous research. Comparing to
the learning curves of previous research, the initial period
of learning is consistent with what others have reported,
but the ‘un-learning’ mentioned above affects the score
greatly. We believe that two aspects could be causing this
problem.

First, each thread is following a different learning pol-
icy with some threads final epsilon value being equal to
0.5. Thus, even when the epsilon value has finished an-
nealing, the agent will still be performing random move-
ments half the time. Past a certain threshold we ideally
want the agent to begin exploiting its knowledge rather
than continuing to explore, and by continuing to randomly
explore these threads could be influencing the learning of
the whole model. This can be seen in the learning curves
of Space Invaders grouped by thread and colored by final
epsilon value in Figure 3. Second, the ‘un-learning’ could
be caused by too small a batch size, due to the stochastic
nature of SGD. As stated in Section 4.1, we utilized a batch
size of 32 to update the predictive network.

Since Ms. Pac-Man showed the most significant amount
of ‘un-learning’ after a successful initial period we experi-
mented with this game. We first altered the final epsilon to
be set at 0.01 on all threads, rather than varying per thread.
We then experimented with increasing the batch size by a
scale of ten to 320. We trained the model for 25M frames to
investigate whether we observe any ‘un-learning’ at around
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Figure 4: Learning curves for 25M frames of A-DQL
Ms. Pac-Man varying whether we keep final epsilons
fixed across all threads, and increasing the batch size.
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Figure 5: Learning curves for 40M frames of A-DQL
Ms. Pac-Man using fixed final epsilon across threads and
a batch size of 320.

the 20M frame mark, as previously. The comparison be-
tween the different configurations can be seen in Figure 4.

The agent produced higher episode rewards when the ep-
silons are all fixed to 0.01. This is natural, since every
thread is performing less random than before and allowed
to exploit rather than keeping some threads fixed at ran-
dom actions half the time. However, the stagnation and
beginning of ‘un-learning’ still exhibits itself at around the
20M mark. Despite a brief moment of uncertainty around
the 15M frame mark, the larger batch size combined with
fixed epsilon value finished at 25M frames the strongest
performing algorithm. This is in line with our knowledge
of SGD; larger batch sizes will exhibit slower learning but
are more stable.

To ensure that we had not just prolonged the ‘un-learning’,
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Figure 6: Learning curves for 10M frames using the AIM-DQL implementation.

Game Human Expert DQL A-DQL AIM-DQL
Ms. Pac-Man 15,693 2,311 841 1087

Montezuma’s Revenge 4,367 0 0 0
Space Invaders 1,652 1,976 295 228

Table 1: Human and DQL scores quoted from [1], DQL is run for 50M frames, A-DQL is run for 40M, and AIM-DQL is
run for 10M frames.

we proceeded to run the A-DQL model with fixed epsilons
and bigger batch size for 40M frames. The learning curve
can be seen in Figure 5 from where we see that learning is
continued past the initial stagnation zone seen prior. After
evaluating this model on 200 episodes the agent attained
an average score of 1,334. Comparing this with Table 1 we
see that we have improved upon our initial score, although
not quite matched DeepMind’s score which was subject to
further training frames and extensive hyper-parameter tun-
ing. It took approximately 14 hours for the A-DQL model
to train for 10M frames and, as such, we were extremely
time-limited in what experiments could be run. Pleased
with the relative success of the A-DQL model, we ended
our exploration of A-DQL here.

4.3 AIM-DQL

As the main focus of our work, we implemented the AIM-
DQL model as described in Section 3.2.3. With three neu-
ral networks being concurrently trained, the computational
expense for this model was much higher. We therefore
trained all AIM-DQL models on a GPU with 10M frames
taking around 13 hours to train, not including the initial
epsilon-greedy stage.

4.3.1 Initial Experiments

Similarly to A-DQL, we first began by running AIM-DQL
for 10M frames on our chosen subset of three games with
reward tradeoff parameter of β = 1. For our first exper-
iment we let the final decay constant δ value be 0.001,
which is reached at the 1Mth frame. The learning curves
can be seen in Figure 6 and the evaluated results in Table
1.

Ms. Pac-Man has showed greatly improved results from
the introduction of intrinsic motivation, achieving a 25%
boost in score in a quarter of the training frames. Further,
the AIM-DQL model has a similar boost over the learner
curve when both are compared at 10M frames. From the
learning curve we can observe an initial stage where no
learning seems to take place before a period of immense
learning.

Disappointingly, Space Invaders and Montezuma’s Re-
venge show no promise of learning anything. Whilst for
Montezuma’s Revenge this is no worse than before, the
introduction of intrinsic motivation has worsened perfor-
mance for Space Invaders.

4.3.2 Optimizations

Similarly to the previous section, with the limited time
available we proceed by optimizing the AIM-DQL model
over Ms. Pac-Man, due to its positive response to the in-
troduction of intrinsic motivation.

The initial stagnation in the learning of Ms. Pac-Man seen
in Figure 6b is possibly due to the decaying feature of in-
trinsic reward. It is possible that by the time learning has
started the intrinsic reward has decayed to such a small
value that it is insignificant. This could explain why the
learning curve at the beginning of Figure 6b looks very
similar to that seen in Figure 2b. We believe that the learn-
ing of the model is highly dependent on how the relation-
ship between intrinsic and extrinsic motivation is defined,
so we focus our attention on this matter.

There is a portion of decay automatically available to the
model through normalization. Since we divide by the max-
imum error seen and over time the model learns better en-
codings, the intrinsic reward will naturally decay. How-



0

300

600

900

1200

0.0 2.5 5.0 7.5 10.0

Frame (M)

E
xt

rin
si

c 
R

ew
ar

d

Natural decay Original Slower decay

(a) Extrinsic Reward

0

10

20

30

40

0.0 2.5 5.0 7.5 10.0

Frame (M)

In
tr

in
si

c 
R

ew
ar

d

Natural decay Original Slower decay

(b) Intrinsic Reward

Figure 7: Learning curves for 10M frames of AIM-DQL Ms. Pac-Man varying how the intrinsic reward decays over time.

ever, it is unclear whether this decay is of a suitable rate,
which is the reason behind the introduction of the decay
parameter δ. We experiment by varying the decay mecha-
nism between: the original decay which linearly annealed
δ from 1 to 0.001 over 1M frames, a slower decay which
linearly annealed δ from 1 to 0.01 over 10M frames, and
natural decay only which kept δ = 1 constant throughout
the learning. The learning curves these experiments can be
seen in Figure 7.

We observe some interesting trends here. Firstly, that the
original decay and slower decay finish at nearly the same
point despite taking very different trajectories. As dis-
cussed earlier, the original decay seems to be negatively
impacted by intrinsic motivation until it has decayed to
an insignificant value before learning can begin. On the
other hand, the slower decay seems to gain a great initial
boost through the presence of intrinsic motivation before
tailing off into a period of slower learning. This implies
that intrinsic motivation can certainly help to speed up ini-
tial learning of an agent by providing guided assistance,
although how the interplay between intrinsic and extrinsic
motivation changes over time is still unclear. Natural de-
cay proves unpredictable and appears to suffer from ‘un-
learning’ at around the 7.5M frame. However, this could
possibly be due to the small batch size still being utilized
for this experiment.

From Figure 7b we can see that the original decay gives a
negligible intrinsic reward, which contributes to the sim-
ilar performance with A-DQL. Natural decay allows for
higher values in the beginning, however is followed by a
sharp drop to negligible values when the teacher model has
learned the encoding well. Slower decay attempts to elon-
gate the period of non-negligible intrinsic reward, how-
ever all methods give negligible intrinsic reward for any-
thing past 2.5M frames. One reason for this could be the
extended period of training that the encoder is subjected
to prior to beginning AIM-DQL. By shortening this pre-

training period we could allow the intrinsic reward to stay
higher for a longer period in AIM-DQL.

One issue we encountered was concerning whether con-
cerning the separate worker threads continued to explore
distinct trajectories. This was seen when the teacher was
not given sufficient frames to initially learn a good encod-
ing. As a consequence, the impact of intrinsic reward was
to deterministically complete the same action repeatedly,
disabling further learning and performing poorly.

From Figure 8 we can see that each thread does follow
a similar learning curve, although similarity is expected
to some degree since each thread utilizes and updates the
same predictive network. While stable online deep Q-
Learning is possible without experience replay, Mnih et. al
[5] suggested that incorporating this technique into the
asynchronous RL framework could substantially improve
the data efficiency of these methods. Therefore to over-
come this potential issue of threads behaving in too similar
a manner an experience-replay mechanism could be imple-
mented.

4.3.3 Optimized Final Run

As was noted previously, the optimizations for AIM-DQL
were done in parallel with the optimizations over A-DQL.
We finally combined the knowledge we have learnt to-
gether to train the learner. We kept epsilons fixed across
threads with an enlarged batch size of 320, as this was seen
to benefit A-DQL in Section 4.2.2. We utilized the slow
decay mechanism for intrinsic motivation as we believed
this showed the greatest promise, as can be seen in Section
4.3.2. We run the AIM-DQL model with the aforemen-
tioned configuration for Montezuma’s Revenge. With
a maximum wall-time of 24 hours on our GPU we train
the model for as many frames as possible in that time,
namely 18M frames. We would have liked to train each
game over this number of frames but due to time restric-
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Figure 8: Learning curves per thread for 10M frames of
AIM-DQL on Ms. Pac-Man.

tions we could only choose one, and with sparse-reward
environments our overall target we selected Montezuma’s
Revenge .

Unfortunately, over 18M frames the learner was unable to
achieve any non-zero extrinsic reward and scored zero on
its evaluation. Whilst this is disappointing, it is not seen
as a complete failure to improve performance on A-DQL.
From the improvements seen on Ms. Pac-Man we still
hold a strong belief that given further time for more pa-
rameter tweaking and increased computational power in-
trinsic motivation would be able to help guide the learner
to a more successful path.

5. CONCLUSION

Sparse-reward environments remain a tough and current
challenge to the AI research field. Without the researcher
providing domain-specific knowledge to the model the
teacher must try to influence the learner to take a success-
ful path. In this project we utilized an exploration-based
intrinsic motivation function to enable a teacher model
to help guide a learner. We combined various methods
from state-of-the-art models published in the last couple
of years. Namely, we utilized the asynchronous aspect of
training from Mnih et al. [5], combined with the role of
intrinsic motivation function defined by error in a sepa-
rate encoded state predictor teacher model as proposed by
Stadie et al. [12]. To train the encoder we incorporated
the ideas of Pathak et al. [10] by using a third model to
predict actions given encoded states, enabling the teacher
to learn an encoding relevant to the possible actions and
outcomes of the agent and ignore irrelevant outside inter-
ference.

We began the project by implementing an asynchronous
version of the DQL network originally proposed by Deep-
Mind [6]. We showed that with little parameter tuning we
could produce good results on Ms. Pac-Man from feeding

in raw-pixel input through a convolutional neural-network,
with multiple agents acting in parallel to allow faster train-
ing and stabilizing the learning process. We discussed op-
timizations to this process through increased batch sizes
and keeping final epsilons fixed across threads.

We continued by implementing the intrinsic motivation
model AIM-DQL and testing the model on the same subset
of games. The model was shown to be extremely temper-
amental to how the trade-off between intrinsic and extrin-
sic motivation was defined, and how the intrinsic motiva-
tion decayed over time. If configured correctly, we showed
that Ms. Pac-Man heavily benefited from intrinsic moti-
vation with an extremely increased initial learning period,
although this was then seen to be followed by a period of
stagnation.

No previous research has been able to conquer Mon-
tezuma’s Revenge without resorting to game-specific in-
trinsic reward-defined functions as in Bellemare et al. [1]
or Kaplan et al. [3]. As such, attempting to tackle this game
in a project may have proved one step too far. However, we
have showed that progress can be made through the intrin-
sic motivation mechanism as seen in Ms. Pac-Man and
we believe that with further configuration tuning progress
can be made in other games.

All code is available on a Github repository,
https://github.com/sofia-samaniego/
cs221project as well as submitted in a cleaner
format in conjunction with this paper. We have
additionally run the A-DQL model on CodaL-
abs in the online worksheet found at https:
//worksheets.codalab.org/worksheets/
0x935af61ad7a043478ee22f0ab0a39b03/. Due
to extended training times and necessity of GPUs we have
not run the AIM-DQL model on this platform.

Possible future work for this project would be to continue
the experiments to find the optimal configuration. In par-
ticular, with the time and computational power a full grid
search over intrinsic reward decay parameters and trade-
off parameter β would be extremely beneficial. Research
into whether the reintroduction of experience replay aids
the learner could provide insight into whether the separate
workers are behaving differently enough or not. Taking in-
spiration from Pathak et al. [10] we defined the encoder
to have the same network architecture as the predictive
model. Further research into different encoders could pro-
vide insightful, and a comparison with the autoencoder ar-
chitecture introduced by Stadie et al. [12] would help con-
firm whether the encoder is truly learning an encoding that
is more beneficial to the agents learning.
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