
University of Oxford

Effects of Particle Attraction and Size

on the Stability of Diffusion Limited

Aggregation

Candidate Number:
213032

Course:
MMath Mathematics

BSP: Structured Project

Hilary Term
2015

Contents

1 Introduction 2

2 Optimising the Algorithm 3
2.1 Models and Methods . 3
2.2 On-Lattice Anisotropy . 8

3 Particle Radii Affecting Stability 12

4 Particle Attraction and Flow Affecting Stability 19

5 Conclusion 32

6 References 33

Appendix A MATLAB Code 35

1

1 Introduction

Proposed by Witten and Sander in 1981 [18], Diffusion Limited Aggregation (DLA) is a
model for a range of natural phenomena that have fractal growth. The model begins with
a static seed in the centre and another particle is launched at a large distance from the
seed. This new particle diffuses through the space by Brownian motion until it is adjacent
to the seed, at which point it attaches and becomes part of the cluster. Another particle
is then launched from a random distant point and walks randomly until it attaches to the
cluster. Particles are continually added until the model is stopped by some parameter. The
model can also be simulated on-lattice with the use of random walk. Despite its relatively
basic growth pattern DLA has proven difficult to model and has become one of the most
studied theoretical aggregation processes, with both on and off lattice models thoroughly
investigated. A good summary of investigations was written by Sander in 2000 [16]. DLA
forms the basis for simulations on a wide range of topics including nanoparticle agglomeration
[20], bacterial colonies [11] and electrodeposition [12]. Figure 1 displays a crystal grown by
electrodeposition in zinc sulfate solution exhibiting DLA.

The optimisation and structural analysis of DLA has provided a long-lasting challenge. As
the cluster size increases, the density of DLA decreases due to the creation of deep fjords
inbetween long branches, and particles then spend significant amounts of time walking in
these fjords before aggregating. Clusters built via DLA exhibit a type of scaling pattern
whereby the radius of a cluster grows according to a power law relationship with the number
of particles in the aggregate. When a drift has been applied to DLA it has been found that
DLA endures a crossover to Ballistic Aggregation (BA) [13]. Motivated by this crossover
of structure we investigate how varying the radii of the particles affects the stability and
scaling of the cluster and whether any crossover occurs. Following on, we apply a type of
drift whereby particles are attracted to one another depending on their radii and equally
investigate whether DLA maintains its defining features. For the duration of these investiga-
tions we needed to maintain the optimisation of our simulation and at each stage we discuss
how this is possible.

A brief synopsis of the paper content is as follows. In Section 2 we describe the model used,
its implementation in MATLAB and a brief critique of modelling on-lattice is discussed.
In Section 3 we begin investigating the stability of DLA by releasing particles of different
radii firstly by means of a discrete distribution between two distinct radii and secondly by
use of various continuous distributions. Section 4 continues these investigations by applying
particle to particle attraction and combining this with cluster of varying radii with larger
particles offering larger attraction.

2

Figure 1: Crystal grown in zinc sulfate solution exhibiting DLA. The picture is from [12].

2 Optimising the Algorithm

2.1 Models and Methods

To produce large scale simulations of the model we would suffer extreme computation times
if we simply adhered to the algorithm of DLA described above. Particles would spend
enormous amounts of time walking before aggregating with large distances to cover before
reaching the cluster. Therefore we must apply techniques to optimise the algorithm and
provide an efficient way of producing clusters. In our model we do this by making use of
a computer’s memory as has been investigated previously [9]. The aggregation modelling
presents us with four main issues that need addressing: simulating the launch of a walker
from infinity, the walker spending a large amount of time walking far away from the cluster,
the walker spending a large amount of time in deep fjords in between branches of the cluster
and identifying when the walker will attach to the aggregate. We explain how each of these
points has been addressed in our model.

If we draw any circle in space a walker performing Brownian motion from infinity will hit the
boundary of the circle with a uniform distribution. We enclose our cluster in a circle slightly
larger than the cluster of radius Rlaunch and launch our new walkers from a uniformly random
point on this circle. In our model we let Rlaunch = Rmax + 5Lmin where Rmax is defined to
be the largest distance from the centre of the lattice of any particle in the cluster and Lmin

is the smallest step size that can taken. Even if we start the walker on this launching circle
it may well wander off in the opposite direction and could spend significant time far away
from the cluster. A walker outside the launching circle will hit the launching circle with a
certain probability distribution depending on where the walker is in space [15]. We can find
this probability density function via a Möbius Transformation and at any time outside the
launching radius bring the walker back in one step. If the walker is at a point with distance

3

a from the seed, with a > Rlaunch, then, setting θ = 0 to be the angle from the seed to the
walker, the walker hits the launching radius with probability density function

f(θ) =
1

2π

a2 −R2
launch

a2 − 2aRlaunch cos θ +R2
launch

.

This calculation can be quite costly if it were triggered often, for example every time the
walker went outside the launching radius. Therefore when using this method we need to
find an optimal distance so that this calculation is performed rarely and only when needed.
However, if we let a = nRlaunch, for n ∈ N, we note that as the distance from the centre of the
walker increases, the probability density distribution approaches the uniform distribution on
the launching circle, since then

f(θ) =
1

2π

n2 − 1

n2 − 2n cos θ + 1
−→ 1

2π
, as n −→∞.

This observation can lead us to use a different approach by which we abandon the time costly
calculations involved in bringing back the particle in one step and employ a killing radius,
Rkill, whereby if a walker walks further than this distance from the centre it is removed
and relaunched from the launching radius uniformly. The walking outside of the launching
radius here is not a problem since we can take large steps and so even though we may take
some steps outside the launching radius this is more efficient than performing calculations to
relaunch the particle from the launching radius. Large n increase computation times however
we seek n large enough so that it provides a good approximation of our uniform distribution.
After investigation it was found that for our model the optimal set up was to utilise a killing
radius of Rkill = 5Rmax. For n = 5 the value is large enough to approximate well a uniform
distribution but still provide good simulation speeds. This can be seen by seen by comparing
the difference in density between the point of highest probability, θ = 0, and the point of
lowest, θ = π. For n = 5 we gain a difference of 5/12π while increasing our parameter to
n = 10 only roughly halves this difference not justifying its increased simulation times.

We now turn our attention to the issue of our particle spending increasingly large amounts of
time inbetween branches of the cluster, the so-called deep fjords. In a cluster of 106 particles
these deep fjords could be many thousands of times the radii of particles and walking with
small steps would be ineffective. As above we employ a tactic of being able to take large steps
when far away from the aggregate. For this to be possible at any point in space the walker
must be able to find out approximately how far it is from the aggregate and in our model we
make use of large computer memory to store matrices of this information. We must define
a maximum step size, Lmax, which is the largest step a particle can take. Ideally we want
Lmax as large as possible but, as we will see below, this increases computation time and so
an equilibrium must be found. Once we have Lmax we can define the Vicinity Matrix which
we will calculate at the beginning and will remain a constant throughout the modelling.
This matrix will be a 2Lmax + 1 square matrix and each cell will contain the rounded down
distances between the cell and the middle cell of the matrix, where if this distance is greater
than Lmax we let the cell entry be Lmax. An example of the Vicinity Matrix is shown in
Figure 2 where we have set Lmax = 8.

4

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

7

7

6

6

6

6

6

6

6

7

7

8

8

8

8

8

7

7

6

5

5

5

5

5

5

5

6

7

7

8

8

8

8

7

6

5

5

4

4

4

4

4

5

5

6

7

8

8

8

7

6

5

5

4

3

3

3

3

3

4

5

5

6

7

8

8

7

6

5

4

3

2

2

2

2

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

1

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

1

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

2

2

2

2

3

4

5

6

7

8

8

7

6

5

5

4

3

3

3

3

3

4

5

5

6

7

8

8

8

7

6

5

5

4

4

4

4

4

5

5

6

7

8

8

8

8

7

7

6

5

5

5

5

5

5

5

6

7

7

8

8

8

8

8

7

7

6

6

6

6

6

6

6

7

7

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Figure 2: Vicinity Matrix with Lmax = 8.

We set up three additional matrices: the Stuck Particles Matrix which stores the exact
coordinates of aggregated particles, the Cluster Matrix which will store an on-lattice version
of the cluster with the cell value equal to the particle label, i.e. the time the particle
aggregated. In the off-lattice case to obtain the on-lattice version we round the aggregated
particle’s real coordinates to the nearest integers. To ensure that at most one particle refers
to each cell we set the radii of the particles to at least one so no two particles can be rounded
to the same cell. The final matrix, the Distance Matrix, will contain the rounded down
distances between each cell and the nearest occupied cell according to our Cluster Matrix
with occupied cells taking the value 0. If a cell is further than Lmax from an occupied cell
then this cell will take the value of Lmax. Figure 3 gives an example of how the Cluster
Matrix and Distance Matrix might look near the beginning of a simulation.

Every time a particle is aggregated we add the particle’s coordinates to the Stuck Particles
Matrix, update the relevant cell in the Cluster Matrix and recalculate some of the cells in the
Distance Matrix. The cells we might have to recalculate are contained in a square centred
on the new stuck particle of side lengths 2Lmax + 1. To update these cells we compare the
entry in each cell of the sub matrix to the corresponding entry in our Vicinity Matrix and
take the minimum out of these two values. This method is the crucial optimisation step
since at every step we can now instantly see roughly how far we are from the cluster by
checking the Distance Matrix. As mentioned above, maximising Lmax would seem to be the
sensible priority as then larger steps could be taken, however after each aggregation we must
recalculate a 2Lmax + 1 square matrix which is costly. We investigated various values for
Lmax and found that the optimal values for clusters with 105 particles is Lmax = 82 and for
clusters with 104 particles Lmax = 27.

Finally our model should be able to tell when a walker is aggregated. In the on-lattice
model this is relatively simple, since a walker at a certain cell is aggregated if any of the four
adjacent cells contain a stuck particle. This is an easy check and does not cost much in terms
of efficiency and is where the on-lattice model gains its speed advantage over the off-lattice
case. Unfortunately for the off-lattice case it is not so simple. By the Markov property of
Brownian motion if we draw any circle around the walker which does not intersect with the
aggregate then our walker will hit the boundary of this circle uniformly. We thus draw circles
around the particle as large as we can without hitting the aggregate and move the walker

5

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Cluster in space

5

4

4

4

3

2

2

2

2

2

3

4

5

4

3

3

3

3

2

1

1

1

2

3

3

4

3

2

2

2

2

2

1

0

1

2

2

2

3

3

2

1

1

1

1

1

1

1

1

1

2

3

3

2

1

0

1

0

1

0

1

0

1

2

3

3

2

1

1

1

1

1

1

1

1

1

2

3

3

2

2

1

0

1

0

1

0

1

2

2

3

4

3

2

1

1

1

1

1

1

1

2

3

4

4

3

2

2

2

2

2

2

2

2

2

3

4

5

4

3

3

3

3

3

3

3

3

3

4

5

5

5

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

(b) Distance Matrix
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

0

6

0

3

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(c) Cluster Matrix

Figure 3: The beginning of a simulation in our various matrices with Lmax = 5.

6

θ

Lhit

a

b

(x0,y0)

(xp,yp)
d

Figure 4: Calculating the hitting distance from a particle. The yellow particle represents
the walker, the red particles aggregated and the green particle is where the walker should be
aggregated to if Lhit satisfies 0 < Lhit ≤ Lmin.

to the boundary of this circle. If we continued in this manner as the particle gets closer and
closer we draw smaller and smaller circles and the particle will never hit the aggregate since
it hits any point on the circle with probability zero. Therefore as well as a maximum step
size we must equally define a minimum step size, Lmin, where we only aggregate if we are
close enough to be able to hit the aggregate in less than this step size. We cannot have Lmin

too large as otherwise we would deviate from Brownian motion but having a small value
increases computation time thus in our model we use Lmin = r/5 where r is the smallest
radius of a particle. We only need to check for aggregation when the walker is in a cell
where the corresponding value in the Distance Matrix is low enough so that we could hit
the aggregate at the next step. This hitting distance will be equal to twice the particle radii
add the minimum step size and add one for rounding errors, so, Dhit = 2r+Lmin + 1 where
r is the radius of the particles. Looking at the submatrix of sufficiently close entries around
the walker we can extract from the Cluster Matrix the relevant particle labels and then by
choosing a random angle to walk uniformly we can calculate the distance needed to collide
with each of these particles. If the distance is less than Lmin then we walk this distance and
attach to the aggregate.

We can calculate this distance through some algebra and geometry. Figure 4 displays the
scenario where θ is our random angle chosen and Lhit is the distance to aggregate. From this

7

we see

a = xp − (x0 + Lhit cos θ),

b = yp − (y0 + Lhit sin θ),

d2 = a2 + b2.

Since d is simply the distance between the two particle centres, d, is the sum of the two
particle radii which is known and we can rearrange these equations to give us the quadratic
equation

AL2
hit +BLhit + C = 0,

where

A = 1,

B = 2(cos θ(x0 − xp) + sin θ(y0 − yp)),
C = (xp − x0)2 + (yp − y0)2 − d2.

Solving this quadratic equation, if there exists a solution then we take the minimum solution
that satisfies 0 < Lhit ≤ Lmin . Otherwise if the solutions are outside this range or do
not exist then the particle will not aggregate in a step of size Lmin. We need to check for
each particle sufficiently close if there is to be collision and in the case of collision with
multiple particles in the aggregate we choose the smallest distance to eliminate the chance
of overlapping.

This method was chosen as it can be easily adapted to perform the model when the particle
radii are not uniform, as long as the smallest radius is of unit size then the model will hold.
We acknowledge that methods such as the Brady-Ball method [3] may provide slightly more
efficient means of constructing models however since investigating stability, not optimisation,
is the purpose of this paper we happily proceed with our above model. An off-lattice cluster
built with 100, 00 particles is shown in Figure 5 and was built in 35 minutes.

2.2 On-Lattice Anisotropy

In the on-lattice case when following the model described above after each step we round
ourselves to the nearest integer cell. When close enough to the aggregate then random
walk on the lattice is used. As mentioned above since the aggregation check on a lattice is
significantly easier then we are able to simulate large scale models of DLA in sensible time.
Figure 6 shows an on-lattice model with 105 particles which was grown in under 2 minutes.
The colouring represents the arrival time of the particle to the cluster and from this Figure
we can see one of the key properties of DLA, that particles mostly attach to large branches
leading to the growth of deep fjords.

In the on-lattice models particles are approximated by square cells and thus a walker cannot
aggregate to anywhere around the aggregated particle as in the off-lattice case. It is restricted
to attaching in one of the four axial directions and as a result of this, the on-lattice model

8

Figure 5: Off-lattice cluster of 100, 000 particles.

-1000 0 1000

-1000

0

1000

A
rr

iv
a

l
T

im
e

First

Last

Figure 6: On-lattice cluster with 105 particles where colouring of the cluster relates to the
arrival time of the particle.

9

-3000 0 3000

-3000

0

3000

A
rr

iv
a

l
T

im
e

First

Last

Figure 7: On-lattice cluster with 106 particles displaying clear anisotropy.

produces anisotropic results with preferred growth in the axial directions. We can demon-
strate the anisotropic behaviour of the on-lattice model through various methods. Our first
and perhaps most primitive method is by producing large-scale cluster of over 106 particles
as can be seen in Figure 7 where axial preferential growth is evident. Here we can clearly
see growth in the axial directions significantly larger than in any other directions.

We can also apply a type of probabilistic exaggeration to the model whereby we require
walkers to visit a site at least M times before we aggregate it. Then if anisotropy is present
the preferred growth of directions will be magnified while improbable growth directions will
become even more unlikely. With this exaggeration applied it does not take large cluster
sizes to display anisotropy and Figure 8 displays clusters of 50, 000 particles with various
values for M . In addition to above we can apply a quantitive measure of the anisotropy in
terms of the fourth circular harmonic [3]

〈cos4θ〉 =
1

N

N∑
i=1

cos4θi,

where the summation is over the aggregated particles and θi refers to the angle of the
aggregated particle relative to the origin. It is known [2] that for fractals with axial anisotropy
then 〈cos4θ〉 > 0, for fractals with diagonal anisotropy 〈cos4θ〉 < 0 and we have equality for
isotropic fractals. Table 1 displays the average values of the fourth circular harmonic over
100 iterates for various cluster sizes. Due to its computational time requirements, the cluster
with 106 particles was only averaged over 10 iterates. Other methods of displaying anisotropy
exist, however with this third dataset we conclude that we have adequately displayed the
anisotropy of on-lattice DLA.

As a result of the clear anisotropy displayed by the on-lattice model, despite the relative

10

(a) M = 2 (b) M = 4

(c) M = 8 (d) M = 16

Figure 8: On-lattice cluster with 50, 000 particles where we require a site to be visited M
times before the particle is aggregated.

Number of Particles 103 104 105 106

〈cos4θ〉 0.0796 0.1243 0.2395 0.4321

Table 1: Average fourth circular harmonic for various cluster sizes.

11

speed at which you can produce large DLA clusters, we proceed by my making use of the
off-lattice model. Investigations have been made into reducing the anisotropy of DLA [4, 19],
however these studies have failed to find a definitive answer leaving delaying the anisotropy
to larger clusters or rotating the direction of the anisotropy as the two best current solutions
to this problem.

3 Particle Radii Affecting Stability

We seek to characters the shape and size of fractals in very much the same way as in geometry.
Where a line can be given a definite length and a square a definite area, we want to be able to
apply some quantitive measure on fractals. This is where we can define the fractal dimension.
A line has dimension one and a square dimension two, however the classic example gives
the dimensions of the UK coastline to be roughly 1.2 since it exhibits properties of both one
and two dimensions. Various definitions exist [5] with perhaps the most common being the
box-counting dimension, where we let N(r) denote the number of squares of side length r
needed to cover the fractal. Then if a fractal obeys the relation

N(r) = c

(
1

r

)D

,

where c is a constant, we say that the fractal has box-counting dimension D. From this we
can take logarithms, re-arrange and take limits to obtain that

D = lim
r→0

logN(r)

log1/r
,

This definition can easily give that the dimension of the von Koch curve is log4/log3 or
that the dimension of the Sierpinski triangle is log3/log2. However, this cannot be used for
DLA since when r gets smaller than the smallest radius of a particle in the cluster the DLA
does not reveal any additional structure and we cannot compute the dimension from taking
continually smaller boxes. This is due to the fact that DLA is not strictly a fractal but a
pre-fractal in that it only exhibits fractal properties up to a certain scale. Instead we make
use of the mass dimension, where we extend the notion of how the mass of an object varies
as its size changes. As before if we have a line and it doubles in size then we double the
mass and if we double the size of a square we quadruple its mass. We pick a point P inside
the fractal, near the middle, and then denote by M(r) the mass of the fractal in a disc of
size r centred on P . Then similarly to the box-counting dimension if a fractal obeys

M(r) = crD,

for some constant c, then the fractal has mass dimension D. If each particle is the same
size we can take the mass of each particle to be unit which simplifies M(r) to simply be the
number of particles. If particles are of different radii then by letting particles of radius one
have unit mass other particles are scaled such that the mass of a particle of radius r is r2.

12

Hence the formula for the mass of the cluster simplifies to

M(r) =
N∑
i=1

r2i ,

where ri is the radius of the ith particle and N is the total number of particles in the cluster.
By taking logarithms of our power law relation we obtain

logM(r) = d logr + logc.

Recognising this as a straight line equation we can then plot logM(r) against logr for various
values of r to give the gradient of the linear least-squares approximation which corresponds
to the fractal dimension. In our model we build an aggregate until the required number of
particles is aggregated and then measure the radius of the cluster. As such, it makes sense to
in fact plot logr against logM(r) and note that the fractal dimension will then be one over
the gradient of the linear least-squares approximation of the points. We grow various cluster
sizes and note the radius of the cluster, Rmax, which is defined to be the largest distance of
an aggregated particle from the centre seed. Then we can plot logRmax against logM(Rmax)
and use a linear least-squares fit to determine the fractal dimension as above. We utilise
MATLAB’s robustfit function to plot this linear fit. For simplicity from now on we refer
to Rmax as simply R and M(R) as M . It has been computationally verified [17] that for
two-dimensional DLA D = 1.71. We build cluster sizes of size 100 up to 200, 000 and plot
the log-log graph in Figure 9. Here the fractal dimension is computed to be D = 1.71 as
expected.

In our first step away from the standard model we altered the radii of particles. When releas-
ing a new walker, with probability p the particle has radius two and radius one otherwise.
Figure 10 displays such a cluster in the early stages of its growth. This alteration could
possibly form models for mineral decomposition with two different minerals or colloids with
two insoluble particle sizes dispersed. The natural question to ask is then will this cluster
obey our power law relation and if so for what mass dimension D? This modification will
not affect the pre-fractal nature of DLA and so it is reasonable to assume that DLA will
still exhibit a scaling pattern given by the power law relation. Some particles have radius
two now and this increases the hitting distance Dhit which, in turn, increases computational
time since we now have to check all particles for collision in a larger area around the walker.
Namely when the walker has radius two, Dhit = 4 + Lmin + 1 and when a walker has radius
one we have now, Dhit = 3 + Lmin + 1 since the walker could be close to a particle of radius
two. This slight increase has an effect on computation time and as such clusters of up to
only 100, 000 particles can be built in reasonable time.

We now investigate whether our modified DLA still obeys the same scaling principles with
various values for p. Clearly if p = 0 or p = 1 then we return to our standard model and
expect to exhibit scaling of D = 1.71. For numerous probability values we grow clusters
of varying sizes from 100 up to 75, 000 and again plot logR against logM to calculate the
fractal dimension as above. Table 2 provides values for D for various values of p with Figure
11 displaying the growth patterns for some of these values.

13

logM
4 5 6 7 8 9 10 11 12 13

lo
g
R

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 9: Plot of logR against logM for various cluster sizes with a linear least-squares
approximation. The fractal dimension is then given by one over the gradient, here D = 1.71.

-40 -20 0 20 40 60

-40

-30

-20

-10

0

10

20

30

40

Figure 10: The early stages of cluster growth with two particles sizes of probability p = 1
2

each.

14

p 0 0.2 0.4 0.6 0.8 1
D 1.71 1.76 1.82 1.76 1.70 1.71

Table 2: Fractal Dimensions, D, for a cluster that takes particle radii two with probability
p and radius one otherwise.

logM
5 6 7 8 9 10 11 12 13

lo
g
R

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

p = 0.2
p = 0.4
p = 0.6
p = 0.8

Figure 11: Growth patterns for various values of p where D is one over the gradient of each
least-squares linear approximation.

As an aside let us comment on the accuracy of our values for D, not only here but throughout
the duration of the paper. To calculate D we plot linear best fits for eleven data points
ranging from size 100 to 106 and to an even lower size for difficult simulations later in the
paper. We repeated numerous data points to find that for the smallest clusters our data
exhibits a ±0.2 confidence interval for logR while the largest clusters give ±0.01. With these
confidence intervals by looking at the largest and smallest gradients possible for our linear
fit we obtain a confidence interval of ±0.5 for D.

From Figure 11 and Table 2 we ascertain that as we had previously predicted, the clusters still
obey the scaling pattern for all these different values for p. In fact, their fractal dimensions
are still similar to the original model and from Figure 11 we notice that the linear fits are
very similar but perhaps for low cluster sizes skewing their values. The radii changes here
have been minimal and we note that DLA can maintain its stability when it incurs minor
perturbations in its modelling. We investigate as to whether making more drastic changes
to the particle radii disrupts the scaling pattern of DLA.

Instead of assigning a probability p we now apply some distribution for the radii of particles.
We consider radii normally, exponentially, gamma and uniformly distributed. In this model
radii are not limited to taking only two values and in fact may take quite large radii. As
remarked in our models section we set that the smallest radius of a particle to one in order

15

r

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normal
Exponential
Gamma
Uniform

Figure 12: Distributions used for particle radii: (a) N(5, 1), (b) Exp(1
2
), (c) Γ(3, 1) and (d)

U[1, 20].

to keep the model functioning. This is naturally done in an exponential, gamma or uniform
distribution whose supports can be manipulated so that they only take values greater than
or equal to one. The normal distribution has the real numbers as its support and so we use
parameters such that obtaining a radius less than one is extremely unlikely and in the case
it does happen we set the radius as one instead.

The following distributions were used: Normal Distribution with mean five and standard
deviation one, Exponential Distribution with mean two, Gamma Distribution with shape
parameter three and rate parameter one and Uniform Distribution on [1, 20]. Figure 12
displays graphically the probability distributions of the four distributions used. A particle
may be assigned a very large radius and as discussed above the possibility of large radii
increases our computation time since at every step we must assume that we are close enough
to aggregate to a particle of large radii. We implement this by assigning a maximum radius,
rmax, where the probability of assigning a radius greater than this is negligible. For the nor-
mal distribution we use rmax = 15 and for the exponential, gamma and normal distribution,
rmax = 20. When a particle is aggregated as before we update our Distance Matrix with new
entries but instead modify the Vicinity Matrix we use to represent the size of the particle
aggregated. To implement this we round the particle radius to the nearest integer, r, and
our Vicinity Matrix is a 2Lmax + r+ 1 square matrix containing the rounded-down distances
between a cell and the edge of a disc of radius r centred at the middle of the matrix. Figure
13 gives an example Vicinity Matrix where Lmax = 6 and r = 3. The slight change here is
that now the Distance Matrix contains the rounded-down distances between the edge of the
closest particle in the cluster rather than the centre of the particle. With this implementation
in place we can build clusters up to 75, 000 particles with particle radii varying from 1 to 20
in under half an hour for the normal, exponential and gamma distribution. For the uniform

16

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

5

5

4

4

4

4

4

4

4

5

5

6

6

6

6

6

6

6

5

4

4

3

3

3

3

3

3

3

4

4

5

6

6

6

6

6

5

4

4

3

2

2

2

2

2

2

2

3

4

4

5

6

6

6

5

5

4

3

2

2

1

1

1

1

1

2

2

3

4

5

5

6

6

5

4

3

2

2

1

0

0

0

0

0

1

2

2

3

4

5

6

6

5

4

3

2

1

0

0

0

0

0

0

0

1

2

3

4

5

6

6

5

4

3

2

1

0

0

0

0

0

0

0

1

2

3

4

5

6

6

5

4

3

2

1

0

0

0

0

0

0

0

1

2

3

4

5

6

6

5

4

3

2

1

0

0

0

0

0

0

0

1

2

3

4

5

6

6

5

4

3

2

1

0

0

0

0

0

0

0

1

2

3

4

5

6

6

5

4

3

2

2

1

0

0

0

0

0

1

2

2

3

4

5

6

6

5

5

4

3

2

2

1

1

1

1

1

2

2

3

4

5

5

6

6

6

5

4

4

3

2

2

2

2

2

2

2

3

4

4

5

6

6

6

6

6

5

4

4

3

3

3

3

3

3

3

4

4

5

6

6

6

6

6

6

6

5

5

4

4

4

4

4

4

4

5

5

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

Figure 13: Modified Vicinity Matrix with Lmax = 6 and r = 3.

Distribution N(5, 1) Exp(1/2) Γ(3, 1) U[1, 20]
D 1.73 1.77 1.66 1.75

Table 3: Fractal Dimensions for clusters that takes particle radii according to different
distributions.

distribution which sees large particles often it takes just under two and a half hours.

Clusters ranging from size 100 to 75, 000 were built and a log-log graph produced as before
to examine whether this version DLA scaled as before. Figure 14 exhibits clusters of 75, 000
particles for the different distributions and Figure 15 the log-log graph. From the clusters we
can see that the changing radii size has had little effect on the appearance of the structure
with long branches still producing deep fjords. For the normal, gamma and exponential
distribution this is not too surprising as the variance in each of these distributions is relatively
small and hence the particle radii are mainly close to the mean value in each distribution.
However the uniform distribution has a large variance and produces particles ranging from
very small to very large often. Noticeably it has produced a significantly larger cluster than
the others as expected but has not disrupted the appearance or stability of DLA. From our
log-log graph we see that our cluster still appears to very much display a power scaling law
since a straight-line fits the data well. The linear fits are all near parallel giving similar
fractal dimensions as seen in Table 3. It was also observed from clusters that new arms
are often built as a result of a particle of large radius. This is particularly evident in the
exponential and gamma case where particles of large radius are unlikely and so occur rarely.
Therefore when one does occur it is mostly followed by smaller particles which can attach
to it from anywhere on its circumference and hence form several chains off it. This can be
seen in Figure 16 where we have zoomed in on a section of the 75, 000 clusters built with
exponentially and uniformly distributed particles.

17

(a) N(5, 1) (b) Exp(1/2)

(c) Γ(3, 1) (d) U[1, 20]

Figure 14: Clusters of 75, 000 particles for various particle radii distributions.

logM
7 8 9 10 11 12 13 14 15 16 17

lo
g
R

4

5

6

7

8

9

10

Normal
Exponential
Gamma
Uniform

Figure 15: Growth scaling for clusters where particle radii follow distributions (a) N(5, 1),
(b) Exp(1/2), (c) Γ(3, 1) and (d) U[1, 20].

18

(a) Exponential Distribution (b) Uniform Distribution

Figure 16: Close up segment of cluster built with exponentially and uniformly distributed
radii displaying branch growth off larger particles.

4 Particle Attraction and Flow Affecting Stability

On a large scale, varying particle radii has had a minimal effect disturbing the fractal di-
mensions slightly but preserving the structure generally. We have built clusters up to 75, 000
particles which consist of varying particle sizes and have previously assumed that despite
their varying size all these particles act uniformly in that they have no effect on the Brownian
motion of the walker.We now begin to apply attraction between particles and combine this
with varying particle sizes where large particles give greater attraction.

Attraction could be defined in numerous ways and so we need declare how we represent it.
We want to introduce biased Brownian motion that has a preferred direction and we do this
by introduction of bias in the exit distribution. Continuing with our model above we had
previously been generating a uniform random angle on [0, 2π) to decide our walking step
direction. We modify the distribution of the angle to produce a bias in certain directions in
order to produce this attraction. We can utilise the Beta distribution, which is a distribution
on [0, 1] with two shape parameters. If the two parameters are set to be equal then we produce
a symmetric distribution around 0.5 which resembles a normal distribution shrunk to the
unit interval. The special case where the shape parameters are both one in fact produces the
Uniform Distribution on the unit interval. Figure 17 displays the distribution with various
equal valued shape parameters. We are forced here to make some choice on how to represent
attraction without precise knowledge of how it occurs in nature. The Beta distribution has a
natural symmetric appearance on a fixed interval and is chosen both by natural intuition and
the ease with which we can manipulate it. To utilise it in our model we alter the support of
the function so that if we have a preferred walk in a direction of angle θ then the distribution
takes values in [θ − π, θ + π) with the distribution symmetric above θ as it was about 0.5
before. We then require an attraction parameter, P , to represent how much force the walker
feels in the direction of θ.

Before we begin the above investigation we start with a more general form of attraction
to let us see the different effects of particle attraction. The effects of drift on DLA have

19

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α = 0.5

α = 1

α = 1.5

Figure 17: Beta(α, α) distribution stretched over the interval [0, 2π) for values α = 0.5, 1
and 1.5.

been previously investigated [13] where it was shown that a model would generate a growth
tendency in the opposite direction of the drift. We begin simply by applying an attraction
to the seed for any walker. As described above the walker will feel an attraction to walk
in the direction of the centre of the cluster governed by a Beta Distribution. We set the
pulling parameter, Pseed, to be the equal parameters of the Beta Distribution. For Pseed = 1
we return to our original model with no pull in any direction, for Pseed > 1 the walker
will experience a pull towards the seed and for Pseed < 1 a repulsion from the seed. When
Pseed ≥ 1 then we can build clusters as quickly as our original model and for Pseed large
enough in fact quicker since our particles aggregate quicker due to their pull towards the
cluster. However for Pseed < 1 since the overarching force is in the opposite direction of the
cluster it takes longer to build, with a cluster of size 50, 000 and Pseed = 0.8 taking a little
under an hour and a half.

With a drift applied in any direction we quickly lose our DLA structure and produce clusters
that look quite dissimilar to DLA. This can be seen in Figure 18 which exhibits clusters of size
50, 000 grown for numerous values for Pseed. For Pseed = 0.8 we no longer have resemblance
to DLA with particles seeking to travel in the opposite direction of the seed and as a result
the cluster produces one long arm to maximise distance from the seed. For large values we
drift away from the recognisable DLA structure to a structure that is much more dense. This
new structure bears a striking resemblance to clusters built by Ballistic Aggregation (BA),
a model closely related to DLA. In this model the Brownian motion walk of the particles
in DLA is replaced by ballistic trajectories. The particles are given initial velocities and
if two collide they join and form a larger particle moving on with a velocity governed by
the conservation of momentum. It is known that BA produces non fractal clusters with
nontrivial scaling properties [10] and forms a model for the coalescence of aerosol particles
in space. With our central force pulling particles to the seed we exhibit a crossover from

20

(a) Pseed = 0.8 (b) Pseed = 1.2 (c) Pseed = 1.5

(d) Pseed = 2 (e) Pseed = 5 (f) Pseed = 10

Figure 18: Clusters of 50, 000 particles where particles where subject to a central force of
magnitude P where colours indicate arrival times.

DLA to BA and lose our scaling properties and fractal tendencies. As we increase the
attraction even further our cluster begins to resemblance clusters built by the Eden Growth
model where clusters grow by random accumulation of material on their boundary and this
provides a model for the growth of bacterial colonies. Further investigations can be made
in this direction varying force direction and with the strength of the force depending on
distance. Analysis has previously been done by Kim et. al. [8, 7] on lattice.

Applying a universal force to the seed has managed to distort the recognisable structure of
DLA and now instead of applying a flow in a defined direction we utilise attraction between
particles. We model this by considering the particle attraction negligible if the particle
is outside a certain distance, the attraction distance, Da. When a walker is within this
distance to any aggregated particle then all aggregated particles near enough will exert some
attraction on the walker. At this point a walker could be subject to multiple attractions from
various aggregated particles and we must combine the forces felt on the walker to produce
the direction of travel and calculate how much attraction is felt in this direction. This is done
by calculating the weighted centre of mass in space of these particles by applying weights to
particles. For each sufficiently close aggregated particle we attach a weight of one over its
distance from the walker squared multiplied by the particle mass. We define this weight by
analogy with gravitational and electrostatic forces in nature. With this, closer aggregated
particles have a greater attraction and larger particles also have a greater attraction and we
have weights wi such that

wi =
r2i
δ2i
,

where δi is the distance between the walker and the ith aggregated sufficiently close particle

21

and ri is the radius of said particle. The centre of mass can then be calculated as

R =
1

W

(∑
i

wixi ,
∑
i

wiyi

)
,

where xi and yi relate to the co-ordinates of each aggregated particle, the summations run
over all sufficiently close particles and W =

∑
iwi is the total weight. Once we know the

centre of mass we can determine the angle between the walker and the centre of mass. The
walker then steps with a preference in this direction determined by a Beta distribution as
above. The strength of this attraction, or equivalently, the equal parameters used in the
Beta distribution, is decided by distance between the walker and the centre of mass and the
total weight acting through the centre of mass, W . We derive an appropriate value for P
by stating some simple properties that we require of it. P need change with the distance
from the centre of mass squared and with the weight of the centre of mass linearly. We also
require P near one for a small weight and large distance. We let the equal parameter used
in the Beta distribution, P , be equal to

P = 1 +
W

Wc

(
1−

(
δR
Da

)2
)
,

where δR is the distance between the centre of mass and the walker, Da is the attraction
distance and W is the total weight of all sufficiently close particles as above. Wc is a constant
that we need define to obtain a suitable ratio for the weight of the centre of mass. It follows
that Wc should depend on the expected amount of weight of the centre of mass. Therefore
we let

Wc =
1

K
µr

2
(
D2

a − 1
)
,

where µr is the expected radius of a particle in the cluster for some constant K. It can be
seen that both P and Wc satisfy the respective properties we stated above. A small centre of
mass far from the walker will tend to a Beta distribution of parameter one and hence result
in no preferred walking direction. A large centre of mass close to the walker will tend to a
Beta distribution of parameter greater than one, giving strong attraction to the centre of
mass. We note that this value could be defined any number of ways and it may be of interest
to look at whether alternative definitions will lead to different results. As we need use some
definition, we continue with the ones derived above, confident that for sensible constants
they will give us a suitable range of attraction.

We launch this calculation at every step where the walker is sufficiently close to the cluster,
within the attraction distance. It was investigated as to whether instead of calculating at
each step we assigned a matrix where each cell its preferred walking direction and attraction
level and then at step approximated the preferred direction by taking information from the
nearest integer cell. With this method whenever a particle is aggregated each sufficiently
close cell would be recalculated to produce a new walking direction and attraction level.
However this method took significantly longer with a 1, 000 particle cluster taking four
minutes and sixteen seconds compared to calculating at each step taking only thirty-one
seconds for Da = 20 and K = 100.

22

Da

K
102 104 106 108

20 1.71 1.65 1.58 1.77
50 1.75 1.69 1.79 1.96
100 1.72 1.71 1.99 2.00

Table 4: Fractal Dimensions of clusters built with attraction between particles for numerous
values for Da and K.

Da

K
102 104 106 108

20 25 13 19 11
50 117 38 27 30
100 409 224 103 87

Table 5: Simulation times to the nearest minute for clusters of 75, 000 uniformly sized
particles with attraction for numerous values for Da and K.

We begin by implementing this in the original model where particle radii are all uniform.
In this the walker is simply attracted to each particle depending on their distance from the
walker and as such the parameters wi and Wc are simplified to

wi =
1

δ2i
,

Wc =
1

K

(
D2

a − 1
)
,

since each particle has radius one. As constructed above, a particle closer than Da will
apply some sort of attraction however large values of Da will increase computation time. By
increasing Da we increase the number of times we have to launch the calculation to compute
the total attraction and at each computation we need check a larger disc around the walker.
Various values for Da and K were tested with the fractal dimensions they produce noted
in Table 4 and the computation times of a 75, 000 particle cluster noted in Table 5. An
increase in Da leads to a drastic increase in computation time but greater K leads to a
decrease in computation time. This is due to large K increasing the weight ratio in P and
hence increasing the attractive force so walkers aggregate faster. The clusters of size 75, 000
particles are exhibited in Figure 19.

The log-log graphs of radius against mass for the various K values can be seen in Figure 20.
We note from Table 4 that increasing Da generally results in an increase in fractal dimension
and for high values of Da and K we obtain very high fractal dimensions close to two. By
observing our 75, 000 clusters we can see that the centre, or nuclei, of fractals with large
values for K are extremely dense. In early cluster formation branches have not yet formed
and a production of a rough dense circle occurs giving us our high fractal dimension. The
clusters with Da = 100 and K = 106 or K = 108 can be seen to only just breaking away
from their nuclei and thus for these parameters we build larger clusters, seen in Figure 21,

23

(a) Da = 20, K = 102 (b) Da = 50, K = 102 (c) Da = 100, K = 102

(d) Da = 20, K = 104 (e) Da = 50, K = 104 (f) Da = 100, K = 104

(g) Da = 20, K = 106 (h) Da = 50, K = 106 (i) Da = 100, K = 106

(j) Da = 20, K = 108 (k) Da = 50, K = 108 (l) Da = 100, K = 108

Figure 19: Clusters of 75, 000 where particles applied an attractive force on each other for
numerous values for Da and K.

24

logM
4 5 6 7 8 9 10 11 12

lo
g
R

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

d = 20

d = 50

d = 100

(a) K = 102
logM

4 5 6 7 8 9 10 11 12

lo
g
R

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

d = 20

d = 50

d = 100

(b) K = 104

logM
4 5 6 7 8 9 10 11 12

lo
g
R

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

d = 20

d = 50

d = 100

(c) K = 106
logM

4 5 6 7 8 9 10 11 12

lo
g
R

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

d = 20

d = 50

d = 100

(d) K = 108

Figure 20: Log-log graph of radius against mass for the different values of K and Da.

25

(a) K = 106 (b) K = 108

Figure 21: Cluster of 105 particles with attraction to the seed and parameters Da = 100 and
K = 106 or K = 108.

to see whether they will break away and form branches as hypothesised. As expected, if we
increase the size of the cluster enough then the branching effect eventually appears and the
cluster leaves its nuclei appearance.

Once branches have been produced we still have a severe lack of freedom in our system as
large parameter values have produced highly symmetric and circular clusters of high density.
The deep fjords are still produced but, while for low parameter values and in our original
model these fjords did not have a uniform shape, now the fjords mostly have the appearance
of thick lines from the outer edge to the nuclei. Similarly, the thickness of branches also
increases for larger parameter values with low values exhibiting wiry thin branches and high
parameters giving thick bushy ones. The width of these branches was measured to be roughly
equal to the size of Da for large K values. We note that these clusters hold a resemblance to
ones built by Alves et. al. [14] who investigated the crossover between DLA and BA where
walkers follow locally persistent trajectories.

The radius of gyration for a cluster is defined as

Rg =

√√√√ 1

N

N∑
i=1

r2i ,

where we sum over all particles in the cluster and ri is the radius of the ith particle. Larger
overall attraction has given us thicker more symmetric looking clusters and we explore the
distribution about the seed of the fractals by calculating the radius of gyration in each
direction and plotting this in Figure 22. This calculation is performed by taking small
segments around the seed and calculating the radius of gyration from all particles whose
centre of mass lies in the segment. For larger parameter values we near the appearance
of a circle since we have relatively few arms and these arms are extremely thick. For low
attraction distances but high attraction we obtain an extremely symmetric but spiked polar
plot since we have a high number of arms which are all roughly equivalent in size. As
our attraction decreases then our polar plots reveal non-symmetric, jagged and irregular

26

K 104 106 108

D 1.72 1.61 1.80

Table 6: Fractal Dimensions, D, for a cluster that takes particle radii two with probability
a half and radius one otherwise for various K values.

plots since we have little symmetry in our clusters and the arms do not have a uniform
appearance.

We now reintroduce particles of different radii beginning, as in the previous section, with
clusters built of two distinct particle radii. We set p = 0.5, so that we release particles of
radii one and two with equal probability. With different particle sizes now present in the
cluster a walker will feel a greater attraction to larger particles and at a larger distance. As
such we need Da to vary depending on the size of the particles. To combat this issue we
define that a particle will apply an attraction a distance proportional to its radius away.
This continues our above analogy since we consider any attraction force below a certain
value negligible and hence the distance at which we fall below this value will be proportional
to the square root of the mass. If the walker has radius one then an aggregated particle of
radius one will apply attraction up to a distance of Dunit and if the aggregated particle has
radius two then this distance becomes 2Dunit. Similarly if the walker has radius two and the
aggregated particle has radius two then the attraction distance becomes 22Dunit. Generally
if the walker has radius rw and the aggregated particle has radius ra then

Da = rwraDunit

where we set Dunit as the attraction distance between two particles of unit radius. We then
alter our definition of Wc slightly to

Wc =
1

K
µ2
r

(
D2

max − 1
)

where Dmax is the maximum attainable attraction distance. As before we have two constants
to vary, Dunit and K. We set Dunit = 20 which gives a maximum attraction radius of eighty
for two particles of radius two. Clusters were built with varying values for K with the
aggregates of 75, 000 particles in Figure 23, our log-log graph in Figure 24 and the fractal
dimensions in Table 6. Previously a linear best approximation had fit the data points well
but now we note that, even though still a good fit for the data, our points do not lie as well on
the linear approximation, especially for the lower attraction values. Our linear fits are more
spread than with uniformly sized particles and lower attraction has produced consistently
larger clusters. As before higher attraction gives a larger fractal dimension however moderate
attraction has given a lower fractal dimension. From our 75, 000 clusters we observe that this
is due to moderate attraction reducing the freedom in the system and forming less complex
branches however with high attraction we have a severe lack of freedom but a large number
of arms dominating the cluster.

Continuing with above we now release particles of radii governed by a continuous distribution.
Particles range in size from one to twenty and, as with two radii sizes, we need vary Da with

27

 200

 400

 600

 800

 1000

30

210

60

240

90

270

120

300

150

330

180 0

(a) Da = 20, K = 102

 200

 400

 600

 800

 1000

30

210

60

240

90

270

120

300

150

330

180 0

(b) Da = 50, K = 102

 200

 400

 600

 800

 1000

30

210

60

240

90

270

120

300

150

330

180 0

(c) Da = 100, K = 102

 200

 400

 600

 800

 1000

30

210

60

240

90

270

120

300

150

330

180 0

(d) Da = 20, K = 104

 200

 400

 600

 800

 1000

30

210

60

240

90

270

120

300

150

330

180 0

(e) Da = 50, K = 104

 200

 400

 600

 800

 1000

30

210

60

240

90

270

120

300

150

330

180 0

(f) Da = 100, K = 104

 500

 1000

 1500

30

210

60

240

90

270

120

300

150

330

180 0

(g) Da = 20, K = 106

 200

 400

 600

30

210

60

240

90

270

120

300

150

330

180 0

(h) Da = 50, K = 106

 100

 200

 300

 400

 500

30

210

60

240

90

270

120

300

150

330

180 0

(i) Da = 100, K = 106

 200

 400

 600

 800

30

210

60

240

90

270

120

300

150

330

180 0

(j) Da = 20, K = 108

 100

 200

 300

 400

 500

30

210

60

240

90

270

120

300

150

330

180 0

(k) Da = 50, K = 108

 100

 200

 300

 400

30

210

60

240

90

270

120

300

150

330

180 0

(l) Da = 100, K = 108

Figure 22: Radius of gyrations in each direction around the seed particle.

28

(a) K = 104 (b) K = 106

(c) K = 108

Figure 23: Cluster of 75, 000 particles built with particles taking radii one half the time and
two otherwise exhibiting inter-particle attraction with Dunit = 20 and various values for K.

logM
5 6 7 8 9 10 11 12 13

lo
g
R

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

K = 10
4

K = 10
6

K = 10
8

Figure 24: Log-log graph of radius against mass for clusters built with particles given radius
two or one with equal probability for various values for K.

29

Distribution N(5, 1) Exp(1/2) Γ(3, 1) U[1, 20]
D 1.67 1.67 1.76 1.79

Table 7: Fractal Dimensions for clusters that takes particle radii according to different
distributions and have inter-particle attraction.

particle radii. Using the same model as with two radii then a walker of size twenty could
be attracted to an aggregated particle of size twenty at a distance of 202Dunit now. We use
the same definition of Wc used above with two radii. As above we need define our variable
K. We seek a sensible value for K that gives intermediate attraction levels because, as we
have seen before, high K values gives overpowering attraction while low K will give virtually
none. For K = 109 we obtain attraction levels ranging from one to no higher than a hundred
giving us a sensible spread of attraction. Large particles give an extremely large attraction
distance and this proves costly on our computation time since now at most steps we feel
attraction and have to calculate the overall preferred direction of travel and attraction level
about a much larger circle round the walker. Indeed at each step we must assume that
a particle of maximum radius is acting on it from as far away as possible. This renders
computation times very large and therefore we implement an additional method to quicken
the simulation.

We create a new matrix, the Attraction Matrix, which will be an on-lattice version of the
cluster where each cell contains the radius needed by the walker to feel attraction. To
calculate this value each time a particle is aggregated we update a square matrix around the
aggregated particle of size 2Dunitrarmax + 1 where ra is the radius of the aggregated particle
and rmax is the maximum particle radius. We know that a walker will feel attraction from
the aggregated particle up to a distance Dunitrarw where rw is the radius of the walker. We
can calculate the distance of each cell from the middle and thus enter in the cell the radius
needed by the walker to feel attraction at this point. Then at each point the walker can look
into the cell relating to its nearest integer coordinates and if the walker has a radius greater
than the radius needed we only then calculate the attraction. Ultimately, while this saves
us considerable time in the long-run, this simulation is still a time consuming construction.
As the size of particles have increased, we increase the minimum step size to Lmin = 0.5 in
order to help improve efficiency. We can then build clusters up to size 50, 000 in just under
one and a half hours in the normal, exponential and gamma case. However for the uniform
distribution seeing large particles often leads to a drastic increase in computation time and
building a cluster of 50, 000 particles takes just over twenty nine hours. The clusters of size
50, 000 are given in Figure 25, their log-log graphs in Figure 26 and the fractal dimensions
produced in Table 7.

With such small variance in particle size the normal distribution gives a cluster similar
in appearance to our original model since most particles have nearly equal size. As the
variance of the distribution increases the complexity of the 50, 000 cluster disappears with
the exponential case displaying first signs of a loss of freedom. With its high variance the
uniform distribution has produced a cluster reminiscent of higher attraction values with
symmetry and lack of freedom both evident in the cluster and equally gives a larger fractal

30

(a) N(5, 1) (b) Exp(1/2)

(c) Γ(3, 1) (d) U[1, 20]

Figure 25: Cluster of 50, 000 particles built with particles taking radii according to distribu-
tions exhibiting inter-particle attraction with Dunit = 2 and K = 109.

logM
6 7 8 9 10 11 12 13 14 15 16

lo
g
R

4

5

6

7

8

9

10

Normal
Exponential
Gamma
Uniform

Figure 26: Log-log graph of radius against mass for clusters built with particles given radius
governed by different continuous distributions with inter-particle attraction.

31

dimension than the others. Increasing K further will increase our attraction so that at every
step we force the particle in a certain direction and ignore much of the effect of particle size.
For these high values we produce clusters similar in appearance to those with two radii and
uniformly sized particles with high K.

5 Conclusion

We have investigated the scaling and structural properties of DLA when particles have been
allowed to take varying particle sizes depending on both continuous and discrete distribu-
tions. We have then applied inter-particle attraction by introducing a bias in the particles
direction of travel governed by a beta distribution with equal parameters.

Altering the radii of particles had little effect on the overall structure of DLA and we con-
tinued to see similar clusters as to when particles had uniform size in both the discrete
and continuous case. With two distinct radii the fractal dimension incurred a slight increase
when we had equal probability of either size. When particle radii were distributed we equally
noted an increase in fractal dimension, although there appeared to be no relation between
the variance of the distribution and the fractal dimension. This stability is an important
feature since DLA provides a model for various systems across numerous scientific fields.
In these scenarios we are limited by how our understanding of the processes which occur
in natural systems. Effective DLA models should therefore not rely on these exact details
which are often lacking. We have shown here that this is possible for varying particle sizes
in that small perturbations in the construction do not affect the overall formation and our
results remain structurally consistent.

However, when particle attraction or flow was applied we quickly lost our recognisable fea-
tures. With a flow applied to the seed particle, as the magnitude of this flow increased
we experienced a crossover from DLA to BA, with perhaps a further crossover to the Eden
Model for even greater flow. Particle attraction was defined before it was implemented by
setting out some basic rules for it to follow and then observing that our definition obeyed
these. Our rules were proposed by attempting to mirror naturally occurring attraction sce-
narios however it would be of considerable interest to see whether alternative definitions
of attraction would produce similar clusters. High particle attraction over large distances
produces similar results to those observed under central flow, with the formation of a struc-
ture consisting of a dense nuclei and then long thick arms of uniform appearance positioned
symmetrically about the nuclei. By observing the radius of gyration in each direction we
were able to observe numerically the transformation in appearance of the clusters and the
changes towards increased symmetry and a more uniform appearance.

When applying particle attraction between particles of different radii we chose an appropriate
value for K so that the attraction difference between small and large particles was significant.
When clusters were formed with this we produced a rigidity in the structures. Arms were
longer and straighter than previously and often appeared in opposite directions across the
seed. With slight attraction this decreased the density of our clusters however, when we
continued to increase K the clusters grew symmetric and with an increasing number of

32

arms. Based on the initial results of our simulations we hypothesise that if the fractal
dimensions were thoroughly examined we would note a decrease in fractal dimensions as
gentle attraction is applied but then as greater attraction is applied an increase in fractal
dimensions.

Optimisation was key throughout the all simulations and we were able to build the majority of
clusters with all amendments in sensible time. However when particle sizes varied drastically
and particle attraction was implemented, our definition of attraction produced drastically
increased computation times, since at each step we needed to calculate the preferred direction
of travel and attraction level. An alternative definition of attraction could potentially lead
to a faster build and the optimisation of this problem is certainly an area for potential future
investigation. Indeed the main obstacle in this calculation is that the attraction a walker
feels depends on the size of the walker and so any pre-allocation of flow in the space would
need to vary for each possible particle size. An alternative definition of attraction may
ignore this dependence on the radius of the walker and thus an approximation of this may
be possible by building a flow map so at each point in space the walker could instantly know
the preferred method of travel. With this method you need update the map every time a
particle is aggregated and this pre-allocation of flow would increase the speed of the system
dramatically although perhaps lose some of the relevance to naturally occurring systems we
have tried to maintain throughout the process.

Although no real life model motivated this research it has been observed that, similar to
with particle attraction, the deposition of particles on fibres and surfaces has undertaken a
crossover from a fractal to a uniform shape when the length scale has increased [13]. However
we note that this crossover has been seen theoretically in various scenarios including when
particles moved by a mix of brownian motion and ballistic paths [1] and biased random
walks [6]. The formation of DLA is an extremely complex yet probabilistic model of which
no comprehensive understanding has yet been achieved. To obtain trustworthy results many
thousands of clusters are required. Time limitations have prevented us from obtaining a
full compliment of results however we have identified some important areas for potential
future research. Whether higher levels of attraction to the seed will induce a crossover to the
Eden Model, whether our definition of attraction is sufficiently accurate and if alternative
definitions might provide different results are all possible routes of further investigation.

6 References

[1] S. Alves and S. Ferreira Jr. Aggregation in a mixture of brownian and ballistic wandering
particles. Physical Review E, 73(5):051401, 2006.

[2] S. Alves and S. Ferreira Jr. Is it really possible to grow isotropic on-lattice diffusion-
limited aggregates? Journal of Physics A: Mathematical and General, 39(12):2843,
2006.

[3] R. Ball and R. Brady. Large scale lattice effect in diffusion-limited aggregation. Journal
of Physics A: Mathematical and General, 18(13):L809, 1985.

33

[4] V. A. Bogoyavlenskiy. How to grow isotropic on-lattice diffusion-limited aggregates.
Journal of Physics A: Mathematical and General, 35(11):2533, 2002.

[5] K. Falconer. Fractal geometry: mathematical foundations and applications. John Wiley
& Sons, 2004.

[6] S. Ferreira Jr, S. Alves, A. F. Brito, and J. Moreira. Morphological transition be-
tween diffusion-limited and ballistic aggregation growth patterns. Physical Review E,
71(5):051402, 2005.

[7] Y. Kim and K. Choi. Anisotropies in aggregates with biased random walks on two-
dimensional lattices. Physical Review E, 48(2):1586, 1993.

[8] Y. Kim, K. Choi, and H. Pak. Aggregates with biased random walks on a square lattice.
Physical Review A, 45(8):5805, 1992.

[9] K. R. Kuijpers, L. de Mart́ın, and J. R. van Ommen. Optimizing off-lattice diffusion-
limited aggregation. Computer Physics Communications, 185(3):841–846, 2014.

[10] S. Liang and L. P. Kadanoff. Scaling in a ballistic aggregation model. Physical Review
A, 31(4):2628, 1985.

[11] M. Matsushita and H. Fujikawa. Diffusion-limited growth in bacterial colony formation.
Physica A: Statistical Mechanics and its Applications, 168(1):498–506, 1990.

[12] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. Sawada. Fractal structures of
zinc metal leaves grown by electrodeposition. Physical review letters, 53(3):286, 1984.

[13] P. Meakin. Effects of particle drift on diffusion-limited aggregation. Physical Review B,
28(9):5221, 1983.

[14] I. R. Nogueira, S. G. Alves, and S. C. Ferreira. Scaling laws in the diffusion limited
aggregation of persistent random walkers. Physica A: Statistical Mechanics and its
Applications, 390(23):4087–4094, 2011.

[15] E. Sander, L. M. Sander, and R. M. Zi. Fractals and fractal correlations. Computers in
Physics, 8(4):420, 1994.

[16] L. M. Sander. Diffusion-limited aggregation: a kinetic critical phenomenon? Contem-
porary Physics, 41(4):203–218, 2000.

[17] S. Tolman and P. Meakin. Off-lattice and hypercubic-lattice models for diffusion-limited
aggregation in dimensionalities 2–8. Physical Review A, 40(1):428, 1989.

[18] T. Witten Jr and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phe-
nomenon. Physical review letters, 47(19):1400, 1981.

[19] C. A. Yates and R. E. Baker. Isotropic model for cluster growth on a regular lattice.
Physical Review E, 88(2):023304, 2013.

[20] R. Zhang, M. Hummelg̊ard, and H. Olin. Size and concentration controlled growth of
porous gold nanofilm. physica status solidi (a), 209(3):519–523, 2012.

34

A MATLAB Code

Included here is the MATLAB code used for building clusters with radii that are exponen-
tially distributed with inter-particle attraction. This code is chosen as it utilises all the
techniques we have used throughout the project including: the methods used for optimising
the original algorithm, the use of several vicinity matrices and the use of the Attraction
Matrix.

1 function [radius,clusterMass] = ExpDistAttraction(numberOfParticles);
2

3 % This is off-lattice DLA simulation with particle radii exponentially
4 % distributed. The particles have attraction for one another with larger
5 % particles exhibiting greater attraction.
6

7 startTime = tic;
8

9 %% SET UP VARIABLES AND MATRICES
10

11 % We begin by setting up some fixed variables for the simulation.
12

13 minStepSize = 0.5; % The minimum step size a particle can take.
14 maxInspectedDistance = 80; % The maximum inspected distance.
15 maxParticleRadius = 20; % The max radius of a particle.
16 unitAttractionDistance = 2;
17 % The attraction distance between two unit particles.
18 K = 10ˆ9; % Attraction constant K.
19 expectedParticleRadius = 3; % Expected particle radius for exponential.
20 maxAttractionDistance = unitAttractionDistance*maxParticleRadiusˆ2;
21 % The maximum attraction distance possible.
22 expectWeight = (expectedParticleRadiusˆ2*(maxAttractionDistanceˆ2 - 1))/K;
23 % Expected weight constant.
24

25

26 % To avoid having to create huge matrices since the cluster won't get as
27 % big as the number of particles we can use a rough estimate.
28 expectedRadius = expectedParticleRadius*numberOfParticlesˆ(1/1.55);
29 maxRlaunch = expectedRadius + 5*minStepSize;
30 maxRkill = 5*maxRlaunch;
31 matrixSize = round(2.5*maxRkill)
32

33 % Here are variables that will change as the simulation progresses, but we
34 % set them up with initial values.
35

36 particleNumber = 1;
37 maximumDistance = 0;
38

39 % StuckParticles will store the exact positions of the particles in the
40 % cluster. The third column stores the radius of the stuck particle.
41 stuckParticles = zeros(numberOfParticles,3);
42

43 % The clusterMatrix will store an on-lattice version of our cluster.

35

44 clusterMatrix = zeros(matrixSize);
45

46 % The distanceMatrix contains the rounded down distances between the cell
47 % and the nearest occupied cell. Occupied cells are labeled as zero.
48 distanceMatrix = maxInspectedDistance*ones(matrixSize);
49

50 % The attractionMatrix contains the radii needed for the walker to feel
51 % attraction.
52 attractionMatrix = (maxParticleRadius+1)*ones(matrixSize);
53

54 %% SET UP VICINITY MATRICES UP TO THE MAXIMUM PARTICLE SIZE
55 % The vicinityMatrices contains the rounded down distances between the
56 % cells and the cell in the middle of the grid. We define them at the
57 % beginning and then never recalculate.
58

59 for i = 1:maxParticleRadius
60 submatrixSize = 2*maxInspectedDistance + 2*i + 1;
61 tempVicinityMatrix = zeros(submatrixSize);
62

63 % Let us set up the vicinityMatrix for this radii size
64

65 vicinityMiddle = maxInspectedDistance + i + 1;
66

67 for k=1:submatrixSize
68 for j=1:submatrixSize
69 xdistance = abs(vicinityMiddle - j);
70 ydistance = abs(vicinityMiddle - k);
71 distanceFromMiddle = max(sqrt(xdistanceˆ2 + ydistanceˆ2)...
72 - i,0);
73 tempVicinityMatrix(j,k) = min(floor(distanceFromMiddle),...
74 maxInspectedDistance);
75 end
76 end
77 vicinityMatrices{i} = tempVicinityMatrix;
78

79 end
80

81

82 %% PLANT CENTRE SEED
83

84 % Let's start the simulation by planting a seed at the centre.
85 middle = round((matrixSize +1)/2);
86 stuckParticles(particleNumber,1) = 0;
87 stuckParticles(particleNumber,2) = 0; % seed is at the origin
88 stuckParticles(particleNumber,3) = exprnd(2) +1 ; % define seed radius
89 clusterMatrix(middle,middle)=particleNumber;
90

91 % Update the distanceMatrix using vicinityMatrix using method described in
92 % paper.
93 tempVicinityMatrix = vicinityMatrices{1};
94 submatrix = distanceMatrix(middle-maxInspectedDistance:middle+...
95 maxInspectedDistance,middle-maxInspectedDistance:middle+...
96 maxInspectedDistance);
97 for i = 1:2*maxInspectedDistance + 1

36

98 for j=1:2*maxInspectedDistance + 1
99 submatrix(j,i) = min(tempVicinityMatrix(j,i),submatrix(j,i));

100 end
101 end
102 distanceMatrix(middle-maxInspectedDistance:middle+...
103 maxInspectedDistance,middle-maxInspectedDistance:middle+...
104 maxInspectedDistance) = submatrix;
105

106 % Update the attractionMatrix using method described in paper.
107

108 tempAttractionDistance = ...
109 round(unitAttractionDistance*maxParticleRadius);
110 radiiNeededSubmatrixSize = 2*tempAttractionDistance + 1;
111 % Take a submatrix of the close enough values to update.
112 radiiNeededSubmatrix = attractionMatrix(middle - ...
113 tempAttractionDistance:middle + tempAttractionDistance,...
114 middle - tempAttractionDistance:middle + tempAttractionDistance);
115 % Define middle of this submatrix.
116 radiiNeededMiddle = ...
117 tempAttractionDistance;
118 % For each cell calculate the radii needed for a walker to feel attraction
119 % from the seed. Update the entry of the cell to the minimum of the old
120 % cell value and this newly calculated radius.
121 for k = 1:radiiNeededSubmatrixSize
122 for l = 1:radiiNeededSubmatrixSize
123 xdif = abs(k - radiiNeededMiddle);
124 ydif = abs(l - radiiNeededMiddle);
125 distanceFromMiddle = sqrt(xdifˆ2 + ydifˆ2);
126 % Calculate radii needed.
127 radiiNeeded = ...
128 distanceFromMiddle/unitAttractionDistance;
129 % Update if this radii is smaller than previously.
130 radiiNeededSubmatrix(l,k) = ...
131 min(radiiNeededSubmatrix(l,k),radiiNeeded);
132 end
133 end
134 % Put the updated submatrix back in.
135 attractionMatrix(middle - tempAttractionDistance:middle +...
136 tempAttractionDistance,middle - tempAttractionDistance:middle +...
137 tempAttractionDistance) = radiiNeededSubmatrix;
138

139 %% BEGIN LAUNCHING PARTICLES
140

141 % Now we have planted our seed at the centre of the matrix and our distance
142 % matrix is initially set up. We can now launch our particles from our
143 % launching radius.
144

145 endscript = 0; % Bool to determine when to end the script.
146

147 while endscript == 0
148

149 % First we must launch the particle from the launching radius and
150 % determine what radii it will have. We need to make sure the launching
151 % radius is large enough so that we can take at least one step.

37

152 Rlaunch = maximumDistance + 2*maxParticleRadius + minStepSize;
153 randStartAngle = 2*pi*rand;
154 x = Rlaunch*sin(randStartAngle);
155 y = Rlaunch*cos(randStartAngle);
156

157 % Now determine the particle radius.
158 rparticle = exprnd(2) + 1;
159 if rparticle > maxParticleRadius
160 rparticle = maxParticleRadius;
161 end
162

163 % For this radius we define the hittingDistance, which is the distance
164 % between the centre of the particle and the nearest particle. The
165 % centreDistance is the smallest distance between the centre of the
166 % walker and the centre of a particle and the attractionDistance is the
167 % largest possible distance attraction will be felt.
168

169 hittingDistance = rparticle + minStepSize + 1;
170 centreDistance = rparticle + maxParticleRadius + minStepSize + 1;
171 attractionDistance = ...
172 maxParticleRadius*rparticle*unitAttractionDistance;
173

174 % Now we can begin our Brownian motion loop.
175 aggregate = 0; % Bool to break below Brownian motion loop.
176

177 while aggregate == 0
178

179 distanceFromCenter = sqrt(xˆ2 + yˆ2);
180 if distanceFromCenter > 5*Rlaunch
181 % If particle has gone outside the killing radius then we
182 % relaunch it from the launching radius.
183

184 randStartAngle = 2*pi*rand;
185 x = Rlaunch*sin(randStartAngle);
186 y = Rlaunch*cos(randStartAngle);
187

188 else
189 % The walker is not outside the killing radius so we need to
190 % find any attraction, check how far we can walk and whether we
191 % will collide.
192

193 % We extract the nearest distance from the distanceMatrix and
194 % the radii needed for attraction from the attractionMatrix.
195 nearestDistance = distanceMatrix(middle - round(y),...
196 middle + round(x));
197 radiiNeededTemp = attractionMatrix(middle - round(y),...
198 middle + round(x));
199

200 % If the walker has large enough radius we find the preferred
201 % walking direction and attraction level.
202 if (rparticle > radiiNeededTemp) | | (rparticle ==...
203 radiiNeededTemp)
204 xround = middle + round(x);
205 yround = middle - round(y);

38

206 attractionCandidateMatrix = clusterMatrix(round(yround...
207 - attractionDistance):round(yround...
208 + attractionDistance),round(xround...
209 - attractionDistance):round(xround...
210 + attractionDistance));
211

212 % This matrix contains the labels of stuck particles near
213 % the walker that could apply attraction. We retrieve these
214 % labels.
215 attractionCandidates = [];
216 for i = 1:2*attractionDistance+1
217 for j = 1:2*attractionDistance+1
218 % If there is an entry then add it to the
219 % candidates.
220 if attractionCandidateMatrix(j,i) ~= 0
221 attractionCandidates = [attractionCandidates...
222 attractionCandidateMatrix(j,i)];
223 end
224 end
225 end
226

227 % Now we have the labels we can extract the exact
228 % co-ordinates from stuckParticles. We have the current
229 % position of the walker (x,y) as well as the positions of
230 % all the candidates. We can then now find the preferred
231 % angle of travel and attraction level.
232

233 % Variables used to calculate the centre of mass and
234 % weight.
235

236 xcentermass = 0;
237 ycentermass = 0;
238 totalweight = 0;
239

240 for t=1:length(attractionCandidates);
241 % Retrieve the coordinates and radius of the particle.
242 tempLabel = attractionCandidates(t);
243 xtemp = stuckParticles(tempLabel,1);
244 ytemp = stuckParticles(tempLabel,2);
245 rtemp = stuckParticles(tempLabel,3);
246 % Check if it is close enough to apply attraction.
247 walkerdistance = sqrt((x-xtemp)ˆ2 + (y-ytemp)ˆ2);
248 attractionTempDistance = ...
249 rtemp*rparticle*unitAttractionDistance;
250 % If it is then add it to the centre of mass
251 % calculation.
252 if walkerdistance < attractionTempDistance
253 xcentermass = ...
254 xcentermass + (rtemp/walkerdistance)ˆ2*xtemp;
255 ycentermass = ...
256 ycentermass + (rtemp/walkerdistance)ˆ2*ytemp;
257 totalweight = ...
258 totalweight + (rtemp/walkerdistance)ˆ2;
259 end

39

260 end
261 % In case no particle is close enough to apply attraction.
262 if totalweight == 0
263 attractionLevel = 1;
264 angleToCentre = pi;
265 else
266 % Else calculate where the centre of mass is and so the
267 % preferred walking direction.
268 xcentermass = xcentermass/totalweight;
269 ycentermass = ycentermass/totalweight;
270

271 xdif = x - xcentermass;
272 ydif = y - ycentermass;
273 xquad = sign(xdif);
274 yquad = sign(ydif);
275 quadcheck = xquad + yquad;
276 if quadcheck == 2
277 % in top right
278 angleToCentre = 3*pi/2 - atan(ydif/xdif);
279 elseif quadcheck == -2
280 % in bottom left
281 angleToCentre = atan(xdif/ydif);
282 else
283 if xquad == 1
284 % in bottom right
285 angleToCentre = 3*pi/2 + atan(abs(ydif)/xdif);
286 else
287 % in top left
288 angleToCentre = pi/2 + atan(ydif/abs(xdif));
289 end
290 end
291 distanceFromR = sqrt(xdifˆ2 + ydifˆ2);
292 % Calculate attraction level.
293 attractionLevel = 1 + ...
294 (totalweight/expectWeight)*(1 - ...
295 (distanceFromR/attractionDistance)ˆ2);
296 % In rare case that we produce attractionLevel below 1
297 % we set it as 1 since we do not have repulsion in our
298 % system.
299 if attractionLevel < 1
300 attractionLevel = 1;
301 end
302 end
303 % Calculate angle walker will travel with attraction
304 % acting.
305 randAngle = ...
306 betarnd(attractionLevel,attractionLevel)*2*pi ...
307 + angleToCentre - pi;
308 else
309 % If there was no attraction then the walker walks in any
310 % direction uniformly.
311 randAngle = 2*pi*rand;
312 end
313

40

314 % Now check if the walker is close enough to aggregate.
315 if (nearestDistance < hittingDistance) | | ...
316 (nearestDistance == hittingDistance)
317 % The walker is close enough to the nearest particle in the
318 % cluster that there is a chance of collision at the next
319 % step. We extract the sufficiently close particles from
320 % the clusterMatrix.
321 xround = middle + round(x);
322 yround = middle - round(y);
323 collisionCandidateMatrix = clusterMatrix(round(yround...
324 - centreDistance):round(yround + centreDistance),...
325 round(xround-centreDistance):round(xround...
326 + centreDistance));
327

328 % This matrix contains the labels of stuck particles near
329 % the walker. We can now extract their labels.
330 collisionCandidates = [];
331 for i = 1:2*centreDistance+1
332 for j = 1:2*centreDistance+1
333 if collisionCandidateMatrix(j,i) ~= 0
334 collisionCandidates = [collisionCandidates...
335 collisionCandidateMatrix(j,i)];
336 end
337 end
338 end
339

340 % Now we have the labels we can extract the exact
341 % co-ordinates from stuckParticles. We have the current
342 % position of the walker (x,y) as well as the positions of
343 % all the candidates. We check each candidate to see if
344 % there is a collision using our quadratic equation.
345

346 % Assume we can take a step of minimum size and if there is
347 % collision we will take a smaller step.
348 stepSize = minStepSize;
349

350 for i = 1:length(collisionCandidates)
351 % Extract details of each individual potential particle
352 % collision.
353 tempLabel = collisionCandidates(i);
354 xcol = stuckParticles(tempLabel,1);
355 ycol = stuckParticles(tempLabel,2);
356 rcol = stuckParticles(tempLabel,3);
357 % Distance between particle centres.
358 dparticles = rcol + rparticle;
359

360 % Solve quadratic equation.
361 A = 1;
362 B = 2*((sin(randAngle))*(x - xcol) +...
363 (cos(randAngle))*(y - ycol));
364 C = (xcol - x)ˆ2 + (ycol - y)ˆ2 - dparticlesˆ2;
365 coefficients = [A,B,C];
366 equationRoots = roots(coefficients);
367

41

368 % If there exists a real, positive solution less than
369 % minStepSize we have collision.
370 for j = 1:2
371 root = equationRoots(j);
372 if (imag(root) == 0) && (root > 0)
373 if (root < minStepSize) | | ...
374 (root == minStepSize)
375 % Then we have a collision with the
376 % particle after a root step, so adjust the
377 % stepSize. This ensures if there are
378 % multiple collisions we take the smallest
379 % step size.
380 if root < stepSize
381 stepSize = root;
382 % Change bool to exit loop.
383 aggregate = 1;
384

385 end
386 end
387 end
388 end
389 end
390

391 % Else we are not near enough to aggregate but are closer
392 % than the maxInspectedDistance.
393 elseif (nearestDistance > hittingDistance) &&...
394 (nearestDistance < maxInspectedDistance)
395

396 stepSize = ...
397 max(nearestDistance - hittingDistance,minStepSize);
398

399 % Else we are at least as far as the maxInspectedDistance
400 % from the cluster.
401 elseif nearestDistance == maxInspectedDistance
402

403 stepSize = max(distanceFromCenter - maximumDistance...
404 - hittingDistance,maxInspectedDistance...
405 - hittingDistance);
406

407 end
408

409 % Now we can take the step with the appropriately calculated
410 % stepSize.
411 x = x + stepSize*sin(randAngle);
412 y = y + stepSize*cos(randAngle);
413 end
414

415 end
416

417 % If the particle has aggregated then we need to update all our
418 % matrices.
419 if aggregate
420 particleNumber = particleNumber +1;
421 % Update stuckParticles.

42

422 stuckParticles(particleNumber,1) = x;
423 stuckParticles(particleNumber,2) = y;
424 stuckParticles(particleNumber,3) = rparticle;
425

426 % Update the clusterMatrix.
427 ymat = middle - round(y);
428 xmat = middle + round(x);
429 clusterMatrix(ymat,xmat) = particleNumber;
430

431 % Now we have updated the stuckParticle matrix and clusterGrid we
432 % need to update our distanceGrid with the new distances. So we
433 % take a submatrix around our new aggregated particle and compare
434 % to the vicnityMatrix corresponding to the rounded particle radius
435 % of the aggregated particle.
436

437 roundedParticleRadius = round(rparticle);
438 % Select appropriate Vicinity Matrix.
439 tempVicinityMatrix = vicinityMatrices{roundedParticleRadius};
440 submatrixSize = 2*maxInspectedDistance +...
441 2*roundedParticleRadius +1;
442 % Take a submatrix around the close enough values in the
443 % distanceMatrix.
444 submatrix = distanceMatrix(ymat - maxInspectedDistance -...
445 roundedParticleRadius:ymat + maxInspectedDistance +...
446 roundedParticleRadius,xmat - maxInspectedDistance -...
447 roundedParticleRadius:xmat + maxInspectedDistance +...
448 roundedParticleRadius);
449 % Update each entry in this submatrix by taking the least value
450 % between the current cell value and the vicinityMatrix.
451 for i = 1:submatrixSize
452 for j=1:submatrixSize
453 submatrix(j,i) = ...
454 min(tempVicinityMatrix(j,i),submatrix(j,i));
455 end
456 end
457 % Put the updated submatrix back in.
458 distanceMatrix(ymat - maxInspectedDistance -...
459 roundedParticleRadius:ymat + maxInspectedDistance +...
460 roundedParticleRadius,xmat - maxInspectedDistance -...
461 roundedParticleRadius:xmat + maxInspectedDistance +...
462 roundedParticleRadius) = submatrix;
463

464 % Now we update the radii attractionMatrix. Define the maximum
465 % attraction distance.
466 tempAttractionDistance = ...
467 round(unitAttractionDistance*rparticle*maxParticleRadius);
468 radiiNeededSubmatrixSize = 2*tempAttractionDistance + 1;
469 % Take a submatrix of the close enough values to update.
470 radiiNeededSubmatrix = attractionMatrix(ymat - ...
471 tempAttractionDistance:ymat + tempAttractionDistance,...
472 xmat - tempAttractionDistance:xmat + tempAttractionDistance);
473 % Define middle of this submatrix.
474 radiiNeededMiddle = ...
475 unitAttractionDistance*rparticle*maxParticleRadius;

43

476 % For each cell calculate the radii needed for a walker to feel
477 % attraction from the newly aggregated particle. Update the entry
478 % of the cell to the minimum of the old cell value and this newly
479 % calculated radius.
480 for k = 1:radiiNeededSubmatrixSize
481 for l = 1:radiiNeededSubmatrixSize
482 xdif = abs(k - radiiNeededMiddle);
483 ydif = abs(l - radiiNeededMiddle);
484 distanceFromMiddle = sqrt(xdifˆ2 + ydifˆ2);
485 % Calculate radii needed.
486 radiiNeeded = ...
487 distanceFromMiddle/(unitAttractionDistance*rparticle);
488 % Update if this radii is smaller than previously.
489 radiiNeededSubmatrix(l,k) = ...
490 min(radiiNeededSubmatrix(l,k),radiiNeeded);
491 end
492 end
493 % Put the updated submatrix back in.
494 attractionMatrix(ymat - tempAttractionDistance:ymat +...
495 tempAttractionDistance,xmat - tempAttractionDistance:xmat +...
496 tempAttractionDistance) = radiiNeededSubmatrix;
497

498 % Check if we need to update the radius of the cluster. Calculate
499 % how far the newly aggregated particle is from the seed.
500 distanceFromCenter = sqrt(xˆ2 + yˆ2);
501 % If this distance is greater than the previous radius, update to
502 % this new radius.
503 if distanceFromCenter > maximumDistance
504 maximumDistance = distanceFromCenter;
505 end
506 % Display the particle number aggregated.
507 disp(['particle aggregated: ' num2str(particleNumber)])
508

509 % End of script check.
510 if particleNumber == numberOfParticles
511 endscript = 1;
512 end
513 end
514 end
515

516 %% Plot and Manipulate Results
517

518 % Now we have aggregated all the particles and are storing the exact
519 % locations of their centres and their radii in stuckParticles. We now plot
520 % the particles and perform some calculations. Define some variables for
521 % plotting.
522 ang=0:0.01:2*pi;
523 particleCosine = cos(ang);
524 particleSine = sin(ang);
525 clf
526 clusterMass = 0;
527

528 % For each aggregated particle we plot it with the appropriate radius and
529 % add its mass to the clusterMass.

44

530 for i = 1:numberOfParticles
531 xcent = stuckParticles(i,1);
532 ycent = stuckParticles(i,2);
533 rcent = stuckParticles(i,3);
534 clusterMass = clusterMass + rcentˆ2;
535 hold on
536 plot(xcent+rcent*particleCosine,ycent+rcent*particleSine,'r');
537 end
538

539 % Now we find appropriate axes limits.
540 miny = min(stuckParticles(:,1));
541 maxy = max(stuckParticles(:,1));
542 minx = min(stuckParticles(:,2));
543 maxx = max(stuckParticles(:,2));
544 xdif = maxx-minx;
545 ydif = maxy-miny;
546 maxaxis = max(xdif,ydif)/2;
547 xlim([- maxaxis - 10,maxaxis + 10])
548 ylim([- maxaxis - 10,maxaxis + 10])
549 hold off
550

551 % Output the desired values.
552 radius = maximumDistance
553 clusterMass
554 timeElapsed = toc(startTime)
555

556 % Finally we save the stuckParticles matrix to save our cluster for future
557 % analysis we may wish to perform.
558 save('expdistattraction.mat','stuckParticles');

45

