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ABSTRACT

Music genre classification, especially using lyrics alone,
remains a challenging topic in Music Information Re-
trieval. In this study we apply recurrent neural network
models to classify a large dataset of intact song lyrics.
As lyrics exhibit a hierarchical layer structure—in which
words combine to form lines, lines form segments, and
segments form a complete song—we adapt a hierarchical
attention network (HAN) to exploit these layers and in ad-
dition learn the importance of the words, lines, and seg-
ments. We test the model over a 117-genre dataset and a
reduced 20-genre dataset. Experimental results show that
the HAN outperforms both non-neural models and simpler
neural models, whilst also classifying over a higher num-
ber of genres than previous research. Through the learning
process we can also visualise which words or lines in a
song the model believes are important to classifying the
genre. As a result the HAN provides insights, from a com-
putational perspective, into lyrical structure and language
features that differentiate musical genres.

1. INTRODUCTION

Automatic classification of music is an important and
well-researched task in Music Information Retrieval
(MIR) [25]. Previous work on this topic has focused
primarily on classifying mood [13], genre [21], annota-
tions [27], and artist [9]. Typically one or a combination
of audio, lyrical, symbolic, and cultural data is used in ma-
chine learning algorithms for these tasks [23].

Genre classification using lyrics presents itself as a nat-
ural language processing (NLP) problem. In NLP the aim
is to assign meaning and labels to text; here this equates
to a genre classification of the lyrical text. Traditional ap-
proaches in text classification have utilised n-gram models
and algorithms such as Support Vector Machines (SVM),
k-Nearest Neighbour (k-NN), and Naı̈ve Bayes (NB).

In recent years the use of deep learning methods such as
recurrent neural networks (RNNs) or convolutional neural
networks (CNNs) has produced superior results and rep-
resent an exciting breakthrough in NLP [16, 17]. Whilst
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linear and kernel models rely on good hand-selected fea-
tures, these deep learning architectures circumvent this by
letting models learn important features themselves.

Deep learning has in recent years been utilised in sev-
eral MIR research topics including live score following [7],
music instrument recognition [20], and automatic tagging
[3]. In many cases, these approaches have led to signifi-
cant improvements in performance. For example, Kum et
al. [18] utilise multi-column deep neural networks to ex-
tract melody on vocal segments while Southall et al. [34]
approach automatic drum transcription using bidirectional
recurrent neural networks.

Neural methods have further been utilised for the genre
classification task on audio and symbolic data. Sigtia and
Dixon [31] use the hidden states of a neural network as
features for song on which a Random Forest classifier
was built, reporting an accuracy of 83% among 10 genres.
Costa et al. [6] compare the performance of CNNs in genre
classification through spectrograms with respect to results
obtained through hand-selected features and SVMs. Jeong
and Lee [14] learn temporal features in audio using a deep
neural network and apply this to genre classification. How-
ever, not much research has looked into the performance
of these deep learning methods with respect to the genre
classification task on lyrics. Here, we attempt to remedy
this situation by extending deep learning approaches to text
classification to the particular case of lyrics.

Hierarchical methods attempt to use some sort of struc-
ture of the data to improve the models and have previously
been utilised in vision classification tasks [30]. Yang et
al. [37] propose a hierarchical attention network (HAN)
for the task of document classification. Since documents
often contain structure whereby words form to create sen-
tences, sentences to paragraphs, etc. they introduce this
knowledge to the model, resulting in superior classifica-
tion results. It is evident that songs and, in particular, lyrics
similarly contain a hierarchical composition: Words com-
bine to form lines, lines combine to form segments, and
segments combine to form the whole song. A segment of a
song is a verse, chorus, bridge, etc. of a song and typically
comprises several lines. The hierarchical nature of songs
has been previously exploited in genre classification tasks
with Du et al. [8] utilising hierarchical analysis of spectro-
grams to help classify genre.

Here, we propose application of an HAN for genre clas-
sification of intact lyrics. We train such a network, allow-
ing it to apply attention to words, lines, and segments. Re-



sults show the network produces higher accuracies in the
lyrical classification task than previous research and from
the attention learned by the network we can observe which
words are indicative of different genres.

The remainder of the paper is structured as follows. In
Section 2 we describe our methods, including the dataset
and a description of the HAN. In Section 3 we provide re-
sults and visualisations from our experiments. We con-
clude with a discussion in Section 4.

2. METHODS

2.1 Dataset

Research involving song lyrics has historically suffered
from copyright issues. Consequently most previous liter-
ature has utilised count-based bag-of-words lyrics. In this
format, structure and word order are lost, and it has been
shown that utilising intact lyrics reveals superior results in
classification tasks [11, 32].

Seeking an intact lyrics corpus for the present study, we
obtained a collection of lyrics through a signed research
agreement with LyricFind 1 . This corpus has been used in
the past to study novelty [10] and influence [1] in lyrics.
The complete set contained 1,039,151 song lyrics in JSON
format, as well as basic metadata including artist(s) and
track name. As the corpus provided no genre information,
we aggregated it ourselves using the iTunes Search API 2 ,
extracting the value for the primaryGenreName key as
baseline truth. Several different sources were not used for
consistency reasons with iTunes found to be the largest,
easily accessible source with reasonable genre tags. This
unfortunately still greatly reduced the size of the dataset
due to the sparse iTunes database. We then further re-
moved any songs that were linked with a genre tag of ‘Mu-
sic Video’, leaving a dataset comprising 244 genres. As
this dataset had a very long tail of sparse genres, we fur-
ther filter the dataset via two methods. Firstly we remove
any genres with less than 50 instances, giving a dataset
of size 495,188 lyrics and 117 genres. Secondly we re-
tain only the top 20 genres, giving a dataset of 449,458
lyrics. We note also that the dataset originally contained
various versions of the same lyrics, due to the prevalence
of cover songs; we retain only one of these versions cho-
sen at random. The song lyrics are split into lines and seg-
ments which we tokenised using the nltk package 3 in
Python. We split the dataset into a rough split of 80% for
training, 10% for validation, and 10% for testing. All pre-
processing was done via Python with the neural networks
built using Tensorflow 4 .

2.2 Hierarchical Attention Networks

The structure of the model follows that of Yang et al. [37].
Each layer is run through a bidirectional gated recurrent

1 http://lyricfind.com/
2 http://apple.co/1qHOryr
3 http://www.nltk.org/
4 https://www.tensorflow.org/
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Figure 1: Representation of the HAN architecture; boxes
represent vectors. A and B vectors represent the hidden
states for the forward and backward pass of the GRU at
the word level, respectively. The line vectors C are then
obtained from these hidden states via the attention mech-
anism. The D and E vectors represent the forward and
backward pass of the GRU at the line level, respectively.
The song vector F is then obtained from these hidden states
via the attention mechanism. Finally classification is per-
formed via the softmax activation function.

unit (GRU) with attention applied to the output. The at-
tention weights are used to create a vector via a weighted
sum which is then passed as the input to the next layer. A
representation of the architecture for the example song of
‘Happy Birthday’ can be seen in Figure 1, where the lay-
ers are applied at the word, line, and song level. We briefly
step through the various components of the model.

2.2.1 Word Embeddings

An important idea in NLP is the use of dense vectors to
represent words. A successful methodology proposes that
similar words have similar context and thus vectors can
be learned through their context, such as in the word2vec
model [26]. Pennington et al. [29] propose the GloVe
method which combines global matrix factorisation and lo-
cal context window methods to produce word vectors that
outperform previous word2vec and SVM based models.

Here we take as our vocabulary the top 30,000 most fre-
quent words from the whole LyricFind corpus, including
those from songs we did not match with a genre. We train
100-dimensional GloVe embeddings for these words using
methods obtained from the GloVe website 5 . Previous re-
search has shown that retraining these word vectors over
the extrinsic task at hand can improve results if the dataset
is large enough [5]. In a preliminary genre classification
task we found that retraining these word embeddings did
improve accuracy, and so we let our model learn superior
embeddings to those provided by GloVe [29].

2.2.2 Gated Recurrent Units

Introduced by Chung et al. [4], GRUs are a form of gat-
ing mechanism in RNNs designed to help overcome the

5 http://nlp.stanford.edu/projects/glove/



struggle to capture long-term dependencies in RNNs. This
is achieved by the introduction of intermediate states be-
tween the hidden states in the RNN. An update gate zt is
introduced to help determine how important the previous
hidden state is to the next hidden state. A reset gate rt is
introduced to help determine how important the previous
hidden state is in the creation of the next memory. The
hidden state is ht, whilst new memory is computed and
stored in h̃t. Mathematically we describe the process as

zt = sigmoid (Wzxt + Uzht−1 + bz) (1)

rt = sigmoid (Wrxt + Urht−1 + br) (2)

h̃t = tanh (Whxt + rt ◦ Uhht−1 + bh) (3)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t, (4)

where xt is the word vector input at time-step t, ◦ is the
Hadamard product, and sigmoid is the sigmoid activation
function. Wz , Uz , Wr, Ur, Wh, and Uh are weight ma-
trices randomly initialised and to be learned by the model
along with the bz , br, and bh bias terms. Bias terms were
not included in the original model by Chung et al. [4], how-
ever have been included here as in Jozefowicz et al. [15].

2.2.3 Hierarchical Attention

Attention was first proposed by Bahdanau et al. [2] with
respect to neural machine translation to allow the model to
learn which words were more important in the translation
objective. Along the lines of that study, we would like our
model to learn which words are important in classifying
genre and then apply more weight to these words. Sim-
ilarly, we can apply attention again on lines or segments
to let the model learn which lines or segments are more
important in classification.

Given input vectors hi for i = 1, . . . , n the attention
mechanism can be formulated as

ui = tanh (Wahi + ba) (5)

αi =
exp(uTi ua)∑n
k=1 exp(u

T
k ua)

(6)

s =

n∑
i=1

αihi, (7)

where s is the output vector passed to the next layer con-
sisting of the weighted sum of the current layers vectors.
Parameters Wa, ba, and ua are learned by the model after
random initialisation.

One layer of the network takes in vectors x1, . . . , xn,
applies a bidirectional GRU to find a forward hidden state
−→
h j and a backward hidden state

←−
h j , and then uses the at-

tention mechanism to form a weighted sum of these hidden
states to output as the representation. Letting GRU indi-
cate the output of a GRU and ATT represent the output
from an attention mechanism, one layer is formulated as

−→
h j =

−−−→
GRU(xj), (8)

←−
h j =

←−−−
GRU(xj), (9)

hj = [
−→
h j ;
←−
h j ], (10)

s = ATT (h1, . . . , hL). (11)

Our HAN consists of two layers, one at the word level, and
one at the line/segment level. Consider a song of L lines
or segments sj , each consisting of nj words wij . Let E
be the pre-trained word embedding matrix. Letting LAY
represent the dimension reduction operation of a layer in
the network as in Eqns 8–11 the whole HAN can be for-
mulated for i = 1, . . . , nj and j = 1, . . . , L as

xij = Ewij (12)

sj = LAY (x1j , . . . , xnjj), (13)

s = LAY (s1, . . . , sL). (14)

Each layer has its own set of GRU weight matrix and bias
terms to learn, as well as its own attention weight matrix,
bias terms, and relevance vector to learn.

2.2.4 Classification

With the song vector s now obtained, classification is per-
formed by using a final softmax layer

p = softmax (Wps+ bp) , (15)

where intuitively we take the entry of highest magnitude
as the prediction for that song. To train the model we min-
imise over cross-entropy loss.

3. EXPERIMENTS

3.1 Baseline Models

We compare the performance of the HAN against various
baseline models.

1. Majority classifier (MC): ‘Rock’ is the most common
genre in our dataset. The MC simply predicts ‘Rock’.

2. Logistic regression (LR): A LR run on the average song
word vector produced from the GloVe embeddings.

3. Long Short-Term Memory (LSTM): An LSTM, treat-
ing the whole song as a single sequence of words and
use max-pooling of the hidden states for classification.
Fifty hidden units were used in the LSTM and each
song had a maximum of 600 words. For full discussion
of the LSTM framework see Hochreiter and Schmidhu-
ber [12].

4. Hierarchical network (HN-L): The HN structure in the
absence of attention run at the line level. At each layer
all of the representations are simply averaged to pro-
duce the next layer input.

For LR, LSTM, and HN-L we let the model retrain the
word embeddings as it trained.

3.2 Model Configuration

The lyrics are padded/truncated to have uniform length. In
the line model, each line has a maximum of 10 words and
a maximum of 60 lines. In the segment model each seg-
ment has a maximum of 60 words and a maximum of 10
segments. Fifty hidden units are utilised in the bidirec-
tional GRUs, whilst one hundred states are output from the



Model 117 Genres 20 Genres

MC 24.71 27.17
LR 35.21 38.13
LSTM 43.66 49.77
HN-L 45.85 49.09
HAN-L 46.42 49.50
HAN-S 45.05 47.60

Table 1: Genre classification test accuracies for the two
datasets (%) using majority classifier (MC), logistic regres-
sion (LR), Long Short-Term Model (LSTM), hierarchical
network (HN-L), and line- and segment-level HAN (HAN-
L, HAN-S).

attention mechanisms. Before testing the model, hyper-
parameters were tuned on the validation set. Dropout [35]
and gradient clipping [28] were both found to benefit the
model. We dropout at each layer with probability p = 0.5
and gradients are clipped at a maximum norm of 1 in the
backpropogation. We utilise a mini-batch size of 64 and
optimise using RMSprop [36] with a learning rate of 0.01.
The models were all run until their validation loss did not
decrease for 3 successive epochs. In all the HAN models,
this occurred between the 5th and 8th epoch.

The code to train the model and perform the experi-
ments described are made publicly available 6 .

3.3 Results

For both dataset sizes we run the baseline models and the
HAN at the line and segment level. Let HAN-L represent
running over lines and HAN-S represent running over seg-
ments. The test accuracies are seen in Table 1.

From the results we see a trend between model com-
plexity and classification accuracy. The very simple major-
ity classifier performs weakest and is improved upon by the
simple logistic regression on average bag-of-words. The
neural-based models perform better than both of the simple
models. The LSTM model, which takes into account word
order and tries to implement a memory of these words,
gives performances of 43.66% and 49.77%, outperform-
ing the HAN on the 20-genre dataset. Over the 117-genre
dataset the best performing models were the HANs, with
a highest accuracy of 46.42% when run over lines. It is
observed that for the simpler 20-genre case, the more com-
plex HAN is not required since the simpler LSTM beats
it, although the LSTM took almost twice as long to train
as the HAN. However for the more challenging 117-genre
case, the HAN-L outperforms the LSTM, perhaps picking
up on more of the intricacies of rarer genres.

In both cases the HAN run at the line level produced su-
perior results than that run over the segment level, giving
a bump of roughly 1.4% and 1.9% in the 117-genre and
20-genre datasets, respectively. The HN-L, which is run
at the line level, additionally outperforms the HAN at seg-
ment level. This indicates that the model performs better
when looking at songs line by line rather than segment by

6 https://github.com/alexTsaptsinos/lyricsHAN

Figure 2: HAN-L confusion matrix for Rock, Pop, Al-
ternative (Alt), Country, and Hip-Hop/Rap (HHR) genres
over larger (117-genre) dataset. Rows represent true genre,
whilst columns are predicted.

segment. In the HAN-L the model can pick up on many
repeated lines or lines of a similar ilk, rather than the few
similar segments it attains in the HAN-S, and this may be
attributive to the better performance. The network does
benefit from the inclusion of attention, with HAN-L clas-
sifying with higher accuracies than HN-L. This increase is
marginal and requires an increased cost, however allows
for the extraction of attention in the visualisations of the
following section.

As expected, classifying over the 20-genre dataset has
given boosts of roughly 3% and 2.5% in the HAN-L and
HAN-S, respectively. It is interesting to note that dis-
carding roughly 10% of the data by only keeping roughly
a sixth of the genres has not strengthened the model by
much. Given the similarity of recognition performance be-
tween the two datasets, even with the simplest of models,
it is likely that the extra genres are predominantly noise
added to the 20-genre dataset. With the HAN-L outper-
forming the LSTM over the 117-genre dataset this then in-
dicates that the model is more robust to noise.

The confusion matrix for HAN-L run over the larger
dataset for the top 5 genres can be seen in Figure 2. We can
see from the matrix that Rock, Pop, and Alternative (Alt)
are all commonly confused; the model predicts Rock for
Alternative almost as many times as it does Alternative. As
the most common genre in the dataset by about 30,000 it
is unsurprising to see the model try and predict Rock more
often, and it is unclear whether a person would be able
to distinguish between the lyrics of these genres. How-
ever, we see that both Country and Hip-Hop/Rap (HHR)
are more separated. With their distinct lyrical qualities,
especially in the case of Hip-Hop/Rap, this is an encour-
aging result indicating that the model has learned some of
the qualities of both these genres.

3.3.1 Attention Visualisation

To help illustrate the attention mechanism, we feed song
lyrics into the HAN-L and observe the weights it applies
to words and lines. For each song we extract the 5 most
heavily weighted lines and a visualisation of their weights
and the individual word weights for a few different cor-
rectly predicted song lyrics can be seen in Figure 3.

From these visualisations we notice that the model has
placed greater weights on words we may associate with
a certain genre. For example ‘baby’ and ‘ai’ are weighted
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Figure 3: Weights applied by the HAN-L for song lyrics that were correctly classified. Line weights appear to the left of
each line and word weights are coloured according to the respective colorbars on the right.

heavily in the Country song, and the most heavily weighted
line in that song is characteristically Country. The model
has placed great weight on a blank line, indicating the
break between segments; it is unclear whether the model
is learning to place importance on how songs are seg-
mented and the number of segments occurring. In the Hip-
Hop/Rap song the model places attention on colloquially
spelled words ‘cause’ and ‘gonna’. Although not included
here, it was observed that for many rap songs swear words
and racial terms were heavily weighted. The model picks
up the ‘woh’ and ‘oo’ in the Rock song and also heavily
weights occurrences of second-person determiner ‘your’
and pronoun ‘you’. It was found that for many Rock songs
this was the case.

In addition some visualisations of lyrics that were in-
correctly classified by the HAN-L can be seen in Figure 4.
We observe the model predicting Country for a Pop song,
applying weights to ‘sin’ and ‘strong’ which could be char-
acteristic of Country songs. The dataset contains songs
with foreign language lyrics. Here we observe a song with
Spanish lyrics classed as Pop Latino by the model whilst
iTunes deems it Pop. This seems like a fair mistake for
the model to have made since it has evidently recognised
the Spanish language. The model also incorrectly classi-
fies the Hip-Hop/Rap song as Pop. In the 5 most heavily
weighted lines we do not spot any instances of language
that indicate a Hip-Hop/Rap song and we hypothesise that

the genericness of the lyrics has led the model to predict
Pop.

4. DISCUSSION

Genre is an inherently ambiguous construct, but one that
plays a major role in categorising musical works [24, 33].
From one standpoint, genre classification by lyrics will
always be inherently flawed by vague genre boundaries
and many genres borrowing lyrics and styles from one an-
other. Previous research has shown that lyrical data per-
forms weakest in genre classification compared to other
forms of data [23]. As a consequence, this problem is not
as well researched and preference has been given to other
methods.

SVMs, k-NN, and NB have been heavily used in previ-
ous lyrical classification research. In addition very rarely
has research looked into classifying more than between 10
genres despite the prevalence of clearly many more gen-
res. Fell and Sporleder classify among 8 genres using
n-grams along with other hand-selected features to help
represent vocabulary, style, structure, and semantics [11].
Ying et al. make use of POS tags and classify among 10
genres using SVMs, k-NN, NB with a highest accuracy of
39.94% [38]. McKay et al. utilise hand-selected features to
produce classification accuracies of 69% among 5 genres
and 43% among 10 genres [23].
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Figure 4: Weights applied by the HAN-L for song lyrics that were incorrectly classified. Line weights appear to the left of
each line and word weights are coloured according to the respective colorbars on the right.

In this paper we have shown that an HAN and other
neural-based methods can improve on the genre classifi-
cation accuracy. In large part this model has beaten all
previously reported lyrical-only genre classification model
accuracies, except for the classification among 5 gen-
res. Whilst having been trained on different datasets the
jump in classification accuracies achieved by the HAN and
LSTM across the 20-genre datasets compared to previous
research indicate that neural structures are clearly benefi-
cial. However, with very similar results between the neural
structures it is still unclear what the optimal neural struc-
ture may be and there is certainly room for further exper-
imentation. We have shown that the HAN works better
with layers at the word, line, and song level rather than
word, segment, and song level. One known issue of the
present dataset is that iTunes attributes genres by artist,
not by track; this is a problem for artists whose work may
cover multiple genres and is something that should be ad-
dressed in the future. A larger issue concerns the accuracy
of the iTunes genre labels more generally, especially for
the larger 117-genre dataset which naturally includes more
subjective and vague genre definitions.

Visualisations of the weights the HAN applies to words
and lines were produced to help see what the model was
learning. In a good amount of cases, words and lines were
heavily weighted that were cohesive with the song genre;
however, this was not always the case. We note that in gen-

eral the model tended to let one word dominate a single line
with the greatest weight. However this was not as apparent
across lines, with weights among lines more evenly spread.
With a large amount of foreign-language lyrics also present
in the dataset, an idea for further research is to build a clas-
sifier that identifies language, and from there classifies by
genre. Any such research would be inhibited, however, by
the lack of such a rich dataset to train on.

To produce a state-of-the-art classifier it is evident that
the classifier must take into account more than just the lyri-
cal content of the song. Mayer et al. combine audio and
lyrical data to produce a highest accuracy of 63.50% within
10 genres via SVMs [21]. Mayer and Rauber then use a
cartesian ensemble of lyric and audio features to gain a
highest accuracy of 74.08% within 10 genres [22]. Further
research could look into employing this hierarchical atten-
tion model to the audio and symbolic data, and combining
with the lyrics to build a stronger classifier. Employment of
the HAN in the task of mood classification via sentiment
analysis is another possible area of research. In addition
the HAN could be extended to include both a layer at the
line and segment level, or even at the character level, to
explore performance.
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