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1 Introduction

Options are a commonly traded and sought after commodity in the financial sector and,
as a consequence, their pricing is of critical importance and has come under significant
mathematical attention. While under no-arbitrage assumptions European options can be
modelled via Black-Scholes and an explicit solution found, no such solution exists for the
American counterpart. This is due to its early exercise property which means that, while
the holder of a European option can only exercise the option at its maturity, an American
option can be exercised by the holder at any time prior to maturity. This path dependence
leads to extreme difficulty in pricing and the approximation and bounding of the price has
been vastly researched [11].

The arbitrage-free price of an American option is the discounted value achieved at the optimal
exercise time, transposing the problem to an optimal stopping one. Varying techniques have
been attempted to value the American option. Monte Carlo methods do not suffer the
curse of dimensionality and so recently have carried more favour [11]. Two main Monte
Carlo methods have been used. The first uses a backwards recursion to solve the optimal
stopping problem, providing a negatively biased approximation. The calculation of nested
conditional expectations becomes the main difficulty and numerous techniques have been
suggested with Longstaff and Schwartz’s method of using least-squares regression one of the
most popular [40]. The second method considers the dual of the problem, giving a positively
biased approximation, and which was developed independently by Rogers [46], and Haugh
and Kogan [27]. Andersen and Broadie combined the two approaches and formulated an
algorithmic hybrid approach which utilised the primal simulation values to compute the
dual [2].

Coined by Yuri Kifer in his 1998 paper [33], ‘Game Options’ (also known as ‘Israeli options’)
provide an extension to American options in a similar way to the extension of European
options by American options. In addition to the holder of the option possessing an early
exercise premium, the writer has the ability to terminate the contract at any time up to
maturity at a penalty. Kifer claims that while these commodities are not commonly traded
they are important in the sense that existing traded contracts such as callable and convertible
bonds allow the writer a cancellation feature. Motivated by the dual formulation of the
American option we show that corresponding dual results can be formulated in several ways
for the game option, each suggesting a different means of computing the option price.

The computation of the game option has not received nearly as much attention as its Ameri-
can counterpart. This is addressed here by adapting methodologies proposed for the Ameri-
can option to the game option case. An extension of regression methods for American options
will value the game option. In the American option this provided a negatively biased ap-
proximation however, due to the nature of its formulation, the approximation produced for
the game option will be neither positively nor negatively biased. We propose a new method
which extends the hybrid methods for American options. Theoretically our method produces
upper and lower bounds for the value of the game option, something that has not been ad-
dressed in the literature. In the case of continuous-time, due to discretisation errors which
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introduce a positive bias, true lower bounds require a large number of time steps. This is not
the case when exercise is only permitted at discrete time intervals, as in Bermudan options,
where our method should produce true lower and upper bounds.

The structure of the dissertation is as follows. Chapter 2 introduces basic theoretical results
used in mathematical finance and needed in the valuation of options, in particular American
options. Chapter 3 concerns itself with the pricing of American options. We provide the-
oretical results and a discussion on previously proposed methods. This is extended to the
case of Game Options in Chapter 4. Here, we emulate similar dual results for the value of
the option and propose algorithms to compute the value of the option based on these results,
giving numerical results and comparing algorithm efficiency. The dissertation is concluded
with a discussion on the success of proposed algorithms and detail on how this research could
be continued.
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2 Background Mathematics

Consider a filtered probability space (Ω,F , (Ft)t≥0,P) where Ω is the sample space, F is a
σ-algebra, (Ft))t≥0 is a filtration on the probability space and P is a probability measure.

Definition 2.1. A stopping time τ with respect to (Ft)t≥0 is a random variable, τ(·) : Ω→
[0, T ] such that {τ ≤ t} ∈ Ft for all t ∈ [0, T ].

Definition 2.2. A stochastic process (Mt)t≥0 is a martingale with respect to the filtration
(Ft)t≥0 if,

(i) (adapted) for each t ≥ 0, Mt is Ft-measurable,

(ii) (integrable) for each t ≥ 0, E[|Mt|] <∞, and

(iii) (martingale property) for all 0 ≤ s < t, E[Mt | Fs] = Ms.

Similarly we define a super-martingle with altered final condition,

(iii) (super-martingale property) for all 0 ≤ s < t, E[Mt | Fs] ≤Ms,

and for a sub-martingale,

(iii) (sub-martingale property) for all 0 ≤ s < t, E[Mt | Fs] ≥Ms.

Definition 2.3. A stochastic process (Mt)t≥0 is a local martingale with respect to the fil-
tration (Ft)t≥0 if there exists a sequence of almost surely increasing stopping times (τk)k≥0
which diverge almost surely, and such that the stopped process M τk

t is an Ft-martingale for
every k.

We can consider the natural filtration (FX
t )t≥0 with respect to a stochastic process (Xt)t≥0,

FX
t = σ(Xs | s ≤ t). A martingale is càdlàg (or RCLL) if it is right-continuous with

left limits. A filtration (Ft))t≥0 satisfies the usual conditions if it is right-continuous and
contains all null events. We can always consider an augmentation of a filtration so that it sat-
isfies the usual conditions and it is known that any martingale has a càdlàg modification [43].

Definition 2.4. A stochastic process (Xt)t≥0 is uniformly integrable if

sup
t≥0

E
[
|Xt|1|Xt|≥K

]
→ 0 as K →∞.

Definition 2.5. A measurable stochastic process (Xt)t≥0 is of class D if X0 = 0 and the
collection {Xτ | τ a finite-valued stopping time} is uniformly integrable.

Definition 2.6. A stochastic process (At)t≥0 is predictable if it is measurable with respect
to the σ-algebra generated by all left-continuous adapted processes.

Doob-Meyer decompositions allow us to break down a super/sub-martingale into a martin-
gale part and a predictable part. A proof of the following theorem can be found in [18].
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Theorem 2.7 (Doob-Meyer decomposition theorem). Consider a càdlàg super-martingale
X of class D. Then there exists a unique, integrable, increasing, predictable process A, and
unique, uniformly integrable martingale M with M0 = A0 = 0 such that

Xt = X0 +Mt − At.

A fundamental and important example of a martingale is Brownian motion.

Definition 2.8. A stochastic process (Wt)t≥0 is a standard Brownian motion (BM) if,

(i) W0 = 0 almost surely,

(ii) Wt is almost surely continuous,

(iii) (stationary and independent increments) for any 0 ≤ s ≤ t, Wt−Ws ∼ N (0, t− s) and
is independent of FW

t .

It was originally proposed that the value of a stock could be modelled as a Brownian mo-
tion. This was consequently updated to the more appropriate geometric Brownian Motion,
a stochastic process where the logarithm of the process follows a Brownian motion.

Definition 2.9. A stochastic process (St)t≥0 follows a geometric Brownian motion (GBM)
if

St = S0 exp

[(
µ− 1

2
σ2

)
t+ σWt

]
where µ and σ > 0 are constants and (Wt)t≥0 is a standard BM. We call µ the drift and σ
the volatility of the process.

Remark. We note that GBM satisfies the stochastic differential equation (SDE)

dSt = µSt dt+ σSt dWt

which helps explain the naming of the constants µ and σ.

We consider an asset whose price follows a stochastic process (St)t≥0 and, in general, we
will assume that this is a GBM. One should ask whether this is a reasonable assumption to
make. Indeed certain properties make it an attractive model: it only takes positive values as
a stock would, its returns are independent of the value of the process and it appears similar
to a stock with comparable jaggedness. Combining this with the relative ease of calculations
ensures that is a widely used assumption, however it should be noted that it is not a perfect
model. Faults include that the volatility is assumed to be constant whereas in practice this
could be dependent on the price of the asset. Additionally GBM is a continuous model and
hence discounts the practice of jumps, which stock prices do exhibit. The study of stocks
that follow jump processes is a prosperous area of research [11].

Consider a risk-free asset (St)t≥0 that increases over time with interest rate process (rt)t≥0.
An amount invested will grow with this interest rate, so if an amount C where invested
initially then at time t the value of this will grow continuously to Ce

∫ t
0 rtdt. Equally, if we are

5



given a final amount C at time t then at time zero the discounted value of this was Ce−
∫ t
0 rtdt.

We call the factor bt = e−
∫ t
0 rtdt the discount factor, defined for 0 ≤ t ≤ T . We also use the

notation, bs,t = e−
∫ t
s rtdt. In this dissertation we focus only on a constant rate of interest,

rt = r, which simplifies to give bt = e−rt and bs,t = e−r(t−s).

Definition 2.10. An option is a contract which gives the holder the right, but not the
obligation, to buy or sell an underlying asset at a price specified on the signing of the
contract, the strike price K. An option has a payoff function h : R+ → R+, which pays at
time t ∈ [0, T ] the intrinsic value ht (or h(St)) to the holder of the option, where T is the
time of maturity.

There exist numerous types of options with varying payoff functions and features. The two
most basic and commonly traded options are European and American. In European options
the holder may only exercise the option at maturity whereas in American options they may
be exercised at any time up to and including maturity. These can be traded as either put or
call options. For a put option the holder of the option has the right to sell the asset at the
strike price whereas in a call option this right is to buy the asset at the strike price. The
payoff functions for these simple vanilla options are therefore given by

Call ht =(St −K)+ (2.1)

Put ht =(K − St)+, (2.2)

where x+ = max(x, 0). Finally, we will call a stock in the money if its payoff function is
greater than zero and out of the money otherwise.
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3 American Options

Numerical approaches to the valuation problem of American options are a thoroughly re-
searched area and still provide a challenge today [11]. The majority of approaches fall into
the following three categories. Formulas and approximations, which comprise transform
methods [28, 48] and asymptotic expansions techniques [21, 25, 29]. Lattice and finite dif-
ference methods which use discrete-state approximations to SDEs to compute the option
prices, first proposed by Parkinson [41] and Cox et. al. [16]. These also include attempts
to solve the problem as a partial differential equation with free boundary conditions applied
[8, 9, 42].

Finally, there are Monte Carlo simulation methods. Whereas computation rates of the above
approaches greaten as the dimension of the problem increases, by the Central Limit Theorem
the convergence rate of Monte Carlo method is O(1/

√
n) independent of the dimension.

This property makes Monte Carlo an attractive approach when the options are over multiple
assets and similarly when the pricing of the option is complex and path-dependent. Monte
Carlo methods are numerous in their ways [7] and the problem can be approached from
two directions. Solving the primal problem by approximating an optimal stopping time
gives a lower bound to the value of the option. Alternatively, using the dual formulation,
construction of a martingale provides an upper bound.

In general finding a stopping strategy seems to be a much easier task than finding a martin-
gale. To compute an optimal exercise policy a backwards dynamic programming principle
is applied. Under this principle an approximation can be computed through various means.
Andersen utilises a functional optimisation approach [3] while Broadie and Glasserman pro-
pose a method based on simulated trees [12].

Broadie and Glasserman also propose a stochastic mesh method which, unlike the above
methods, generates an error bound and was shown to converge to the option value [13]. A
popular approach is through simple regression, which can be viewed as a special case of
the stochastic mesh method [23]. This approach has been taken by Longstaff and Schwartz
[40], Carriere [14], and Tsitsiklis and Van Roy [50, 51] as well as others. Tsitsiklis and Roy
provide theoretical proof of convergence for their algorithm whilst Clement, Lamberton and
Protter provide this for the algorithm proposed by Longstaff and Schwartz [15]. Glasserman
and Yu investigate the convergence when both the number of basis functions and sample
paths increase to infinity [24].

Instead of linear regression, non-parametric regression could be used as in [14]. Todorovic
showed that non-parametric regression can lead to better estimates if the payoff function is
not chosen as a basis function [49]. The choice of basis functions can be extremely sensitive.
Recently the idea of policy iteration has been introduced by Kolodko and Schoenmakers
to help remove this sensitivity [34]. The efficiency of the algorithm was improved upon by
Broadie and Cao [10] with Beveridge and Joshi providing further improvements [6].

Using the dual approach we can attempt to build a martingale from scratch and therefore
build a method that is, in some sense, a pure dual solution. A pure solution to the dual
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problem is sought by Rogers who considers a linear combination of martingales that bear
some resemblance to the value function [46] . More recently he has proposed a more algorith-
mic approach to the pure solution based on principles similar to that of backwards dynamic
programming [44, 45].

The majority of dual approaches utilise a primal approximation to construct a martingale,
giving a hybrid algorithm. Haugh and Kogan propose such a hybrid method, using a pri-
mal approximation for the value of the option to generate the martingale [27]. Andersen
and Broadie apply a variation of this technique producing a more computationally effective
method and utilising nested simulations [2]. Belomestny, Bender and Schoenmakers propose
a method avoiding the use of nested Monte Carlo simulations [4]. Recently the use of Mul-
tilevel Monte Carlo has been investigated by Belomestny, Schoenmakers and Dickmann [5]
after recent proposals by Mike Giles [22]. An advantage of these hybrid approaches is that
since both upper and lower bounds are produced an approximate confidence interval can be
formed for the value of the option.

In the following sections we provide theoretical valuation of an American option, introducing
both the primal and dual problems. We describe and review the algorithmic methods for the
primal and dual problems proposed by Longstaff and Schwartz, and Andersen and Broadie,
respectively. For each we discuss and utilise several time-saving features, variance reduction
techniques and compare the possible different implementations. The final section provides
numerical results and exhibits the success of the algorithms for an American option, which
we will extend to the case of the game option in the following chapter.

3.1 Pricing

We price options through risk-neutral derivative pricing theory assuming a complete market,
with all expectations taken with respect to the equivalent local martingale measure. Further
details on this theory, including the Fundamental Theorems of Asset Pricing, can be found
in [17].

Definition 3.1. Consider an American option with payoff function (ht)0≤t≤T . The arbitrage-
free price for such an option is given by

Vt = sup
τ∈T (t,T )

E [bt,τhτ | Ft] , t ∈ [0, T ] (3.1)

where T (t, T ) denotes the set of stopping times taking values in [t, T ].

This definition is intuitive. The price of the option is the highest value that can be achieved
through exercise discounted back to the present value. This is the primal problem and gives
the time zero price for the American option as

Primal V0 = sup
τ∈T (0,T )

E [bτhτ ] . (3.2)

Using any τ generates a lower bound,

V0 ≥ E [Zτ ] .
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3.1.1 Dual Formulation

To derive the dual formulation we define a useful process called the Snell envelope.

Definition 3.2. The Snell envelope of the discounted payoff btht is the process

Zt := btVt = ess sup
τ∈T (t,T )

E [bτhτ | Ft] . (3.3)

Definition 3.3. A family {Xi : i ∈ I} is said to have the lattice property if for all i, j ∈ I,
there exists k ∈ I such that Xk ≥ Xi ∨Xj almost surely.

Lemma 3.4. Let {Xi : i ∈ I} be a family of non-negative random variables with the lattice
property and G any sub-σ-algebra. Then

E[ess sup
i∈I

Xi | G ] = ess sup
i∈I

E[Xi | G ].

Proof. By the lattice property we can define a sequence (in)n∈N such that (Xin)n∈N is a.s
non-decreasing and ess supi∈I Xi = supn∈NXin = limn→∞Xin a.s. The result then follows
through monotone convergence.

Remark. We can replace the essential supremum with an essential infimum, which will be
required later when valuing game options.

Lemma 3.5. For any t ≥ 0, the family {E[bτhτ | Ft] : τ ∈ T (t, T )} has the lattice property.

Proof. Fix t ≥ 0 and let τ, σ ∈ T (t, T ). Define

Xτ = E[bτhτ | Ft]

Xσ = E[bσhσ | Ft].

Let
ρ = τ1Xτ≥Xσ + σ1Xτ<Xσ .

Then certainly ρ ∈ T (t, T ) and E[bρhρ | Ft] ≥ E[bτhτ | Ft] ∨ E[bσhσ | Ft].

Combining the two previous lemmas for all t ≥ 0 and sub-σ-algebras G we have

E[ ess sup
τ∈T (t,T )

E[bτhτ | Ft] | G ] = ess sup
τ∈T (t,T )

E[E[bτhτ | Ft] | G ]. (3.4)

Theorem 3.6. Assume that the discounted price process btht is right-continuous and that
for some p > 1, sup0≤t≤T |btht| ∈ Lp, that is E[sup0≤t≤T |btht|p] <∞. Then the Snell envelope
process is a càdlàg super-martingale of Class D.
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Proof. We first prove the super-martingale property. Taking expectations under the risk-
neutral measure, for 0 ≤ s ≤ t

E[Zt | Fs] = E[ ess sup
τ∈T (t,T )

E[bτhτ | Ft] | Fs]

= ess sup
τ∈T (t,T )

E[E[bτhτ | Ft] | Fs]

= ess sup
τ∈T (t,T )

E[bτhτ | Fs]

≤ ess sup
τ∈T (s,T )

E[bτhτ | Fs]

= Zs,

using (3.4) for the second equality, and where the third equality follows from the Tower Law.
The inequality follows since T (t, T ) ⊆ T (s, T ). As Zt has paths that are right-continuous
with left limits, it is càdlàg. By our Lp-bounded assumption, the Snell envelope will also be
Lp-bounded,

sup
t∈[0,T ]

E[|Zt|p] = sup
0≤t≤T

E[|ess sup
τ∈T (t,T )

E[bτhτ | Ft]|p]

≤ sup
0≤t≤T

E[|E[ ess sup
τ∈T (t,T )

bτhτ | Ft]|p]

≤ sup
0≤t≤T

E[E[| sup
s∈[t,T ]

bshs|p | Ft]]

= sup
0≤t≤T

E[| sup
s∈[t,T ]

bshs|p]

= E[| sup
s∈[0,T ]

bshs|p]

< ∞,

where the inequality follows by Jensen’s inequality and the third equality by the Tower Law.
Since p > 1 this indicates our Snell envelope will be UI and hence Z is of Class D.

The Snell envelope is the smallest super-martingale that dominates the discounted payoff btht.
By the Doob-Meyer decomposition we know there exists unique M̃ and Ã such that

Zt = btVt = V0 + M̃t − Ãt (3.5)

where M̃ is a uniformly integrable martingale, Ã is an integrable, increasing, predictable
process and M̃0 = Ã0 = 0.

Theorem 3.7.

Dual V0 = inf
M∈H1

0

(
E[ sup

t∈[0,T ]
(bth(t)−Mt)]

)
(3.6)

where H1
0 is the space of L1-bounded martingales M with M0 = 0. Moreover, this infimum

is attained when M = M̃ , where M̃ is the martingale from the Doob-Meyer decomposition
of the Snell envelope process Z.
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Proof. Consider M ∈ H1
0 . Then by (3.2)

V0 = sup
τ∈T (0,T )

E [bτhτ +Mτ −Mτ ]

= M0 + sup
τ∈T (0,T )

E [bτhτ −Mτ ]

≤ E[ sup
t∈[0,T ]

(btht −Mt)],

where we have used the Optional Stopping Theorem for the second equality. As M was
arbitrary,

V0 ≤ inf
M∈H1

0

(
E[ sup

t∈[0,T ]
(btht −Mt)]

)
.

To finish the proof it suffices to show that when the martingale part of the Doob-Meyer
decomposition of the Snell envelope process Zt is used, this in fact gives equality. Letting
M = M̃ ,

V0 ≤ E[ sup
t∈[0,T ]

(
btht − M̃t

)
]

= V0 + E[ sup
t∈[0,T ]

(
bt (ht − Vt)− Ãt

)
]

≤ V0.

The second inequality follows from ht ≤ Vt and Ã ≥ 0, since Ã is an increasing process with
Ã0 = 0.

3.2 Algorithmic Methods

3.2.1 Dynamic Programming Principle

Whilst an American option can be exercised at any time before maturity, to computationally
model we must discretise so early exercise is available only at certain times {0 = t1 < · · · <
td = T}. This is known as a Bermudan option. As the number of time steps increases the
Bermudan option better approximates the American option. To suppress notation we will
write i instead of ti, so that Vti becomes Vi and similarly for other processes and filtrations.
At maturity,

Vd = hd,

since the holder exercises at maturity only if in the money. At time i = 1, . . . , d − 1, the
holder can either exercise or continue. Immediate exercise presents the holder with hi. The
expected value of the option conditional on not exercising at time i is

Ci = E[bi,i+1Vi+1 | Fi], (3.7)
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and called the continuation value. Intuitively, at each exercise time the holder only exercises
if the value of immediate exercise is greater than or equal to the continuation value, if hi ≥ Ci.
Therefore the value of the option at time i is

Vi = max (hi, Ci) (3.8)

for i = 1, . . . , d− 1. Since exercise is not possible at time 0,

V0 = C0.

We obtain the recursion formula

Ci =E[bi,i+1 max (hi+1, Ci+1) | Fi]

Cd = 0
(3.9)

for i = 0, . . . , d− 1.

The construction of continuation values gives rise to an exercise policy; we exercise at the
first time i such that hi ≥ Ci, if it occurs. We formalise this as

τ = min {i = 1, . . . , d : hi ≥ Ci} . (3.10)

The exercise value is discounted back to time 0 to give a lower bound for the true value of
the option,

L0 = E[bτhτ ].

Since C is a function of the asset price at time i we can consider the set of prices {s ∈ R+ :
hi(s) ≥ Ci(s)} where exercise is indicated. We call this the exercise region. Its complement
in R+ is called the continuation region. The exercise policy defined by (3.10) is the first time
the asset price enters the exercise region.

3.2.2 Least-Squares Monte Carlo Method

V0 is found by using the recursion formula (3.9) to compute the continuation values. This
computation requires calculation of a conditional expectation which Longstaff and Schwartz
estimate through a least-squares regression [40]. Consider basis functions {φi}i∈N. We ap-
proximate Ci by the first M basis functions,

Ci(s) =
M−1∑
j=0

βijφj(s) (3.11)

for i = 0, . . . , d− 1.

Working backwards, at each time step the required coefficients are computed by performing
a least-squares regression on all paths in the money. It can be shown that this approximated
conditional expectation converges in mean square and in probability to the true continuation
value as M → ∞ [53]. The value of the option is the continuation value at time zero and
taking the average over all sample paths obtains the Monte Carlo estimate.
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Of importance is the choice of basis polynomials. Longstaff and Schwartz make use of
weighted Laguerre polynomials. Rasmussen proposes basis functions which depend on the
current state of the asset, the equivalent European option price and a product of the two
[47]. In particular,

φ0(x, t) = K

φ1(x, t) = x

φ2(x, t) = BS(x, t)

φ3(x, t) = xBS(x, t),

(3.12)

where BS(x, t) is the Black-Scholes value of the corresponding European option started from
x at time t with maturity at time T .

The initial LSM algorithm proposed by Longstaff and Schwarz is not at optimal efficiency
and we make several modifications to decrease computation time. Their algorithm makes
use of a continuation matrix which holds the continuation value for each sample path at each
time point. This is unneeded and a large use of memory; we replace it with a vector that
stores the continuation value for each path and updates backwards in time, similar to the
efficiency suggestions proposed in [31].

Using the same set of sample paths to estimate the regression coefficients and estimate the
value of the option introduces the risk of possible bias. Thus we modify the Longstaff-Scwartz
algorithm (as in [24, 47]) by using an independent set of sample paths to approximate the
value of the option once regression coefficients have been found.

To reduce the standard deviation of the Monte Carlo estimator we use two popular tech-
niques, both investigated by Rasmussen in relation to option pricing [47]. The first is the use
of antithetic variates, where path estimates are computed by averaging the discounted pay-
offs from a ‘positive’ and ‘negative’ path. The second method is the introduction of a control
variate. Further information on variance reduction techniques can be found in [30]. We call
the LSM method with variance reduction techniques applied the LSMVR method.

3.2.3 Hybrid Method

The dual approach constructs a martingale which provides a positively biased approximation
through (3.6). We call this algorithm since we utilise a primal algorithm, such as the LSM
method, to build the dual martingale. Recalling (3.10), we define an exercise indicator
process {Ii}i=1,...,d at each exercise time

Ii =

{
1 if hi ≥ Ci

0 otherwise.
(3.13)

It is given that I0 = 0. At any time 0 ≤ i < d we consider the next time the option should
be exercised

τi = inf {i < k ≤ d : Ik = 1} . (3.14)
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Recall this exercise strategy defines a lower bound price process

biLi = E[bτihτi | Fi]. (3.15)

We define the approximating martingale for 0 ≤ i ≤ d− 1,

M0 =L0

Mi+1 =Mi + bi+1Li+1 − biLi − IiE[bi+1Li+1 − biLi | Fi].
(3.16)

Theorem 3.8. The constructed process M is a martingale.

Proof. Consider first when Ii = 0. Then τi = τi+1, since we continue at time i. Then

biLi =E[bτihτi | Fi]

=E[E[bτihτi | Fi+1] | Fi]

=E[E[bτi+1
hτi+1

| Fi+1] | Fi]

=E[bi+1Li+1 | Fi],

where the first and fourth equalities follow by definition and the second equality follows by
the Tower Law. Since the expectation part vanishes when Ii = 0, the martingale property
follows. Now consider when Ii = 1. Then

E[Mi+1 | Fi] =Mi + E[bi+1Li+1 − biLi | Fi]− E[bi+1Li+1 − biLi | Fi]

=Mi.

We note that since biCi = biLi when Ii = 0 and biCi = E[bi+1Li+1 | Fi] when Ii = 1 then
the martingale simplifies to

M0 =L0

Mi+1 =Mi + bi+1Li+1 − biCi.
(3.17)

We should briefly note that since M0 6= 0, then M /∈ H1
0 . However this is solved through use

of the martingale Nt = Mt −M0, which is in H1
0 . Using (3.6),

U0 := L0 + E[max
1≤i≤d

(bih(Si)−Mi) | F0] (3.18)

gives an upper bound for the value of the option. The tightness of this bound is investigated
by Andersen and Broadie [2].

To summarise, the LSMVR algorithm is run to produce a lower bound and regression coeffi-
cients for the approximated continuation values, which we denote C̃i. These are then used to
construct the martingale for each sample path and then compute the Monte Carlo estimate
to the expectation in (3.18).

The computation of M entails calculation of further conditional expectations. Andersen and
Broadie propose that at each time step sub-simulations are run to compute biCi. These
sub-simulations are costly and greatly increase the computation time of the algorithm. We
apply two techniques to reduce this computational cost.
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Sub-Optimality Checking. We note that for paths in the continuation region the upper
bound increment is zero since biCi = biLi. When certain that the path is in the contin-
uation region (hi < Ci), we can therefore skip these sub-simulations. Using the LSMVR

approximation C̃i for this check introduces the risk of incorrect continuation when

Ci ≤ hi < C̃i.

To combat this a lower bound of the continuation value Ci can be used, removing the risk
of incorrect continuation. A sensible and easily attainable lower bound is the corresponding
European option value. Avoiding these sub-simulations via this technique, which Broadie
and Cao dub ‘sub-optimality checking’, will provide considerable efficiency improvements,
especially in the case of deep out of the money options.

The lower bound provided by the European value allows many sub-simulations to occur as
incorrect exercises. If the regression coefficients provided by the LSMVR algorithm are rea-
sonably accurate then use of C̃ would allow avoidance of a larger number of sub-simulations.
In the following section we provide results from simulations and compare the usage of Ci

and C̃i in both computational time saving and accuracy.

One-Step Computation Andersen and Broadie allow the sub-simulations to run until
stopped by the exercise policy. This is incredibly costly computationally. We instead perform
a one-step computation, whereby we simulate only one-step into the future of the path and
approximate the continuation value using the regression coefficients.

3.3 Numerical Results

We price a simple American put option on a single underlying asset following a GBM. The
following parameters are used:

K = 100,

r = 6%,

σ = 40%,

T = 0.5,

with S0 varying. The simple American put on a single asset can be evaluated easily though
a binomial scheme with a high number of time steps allowing comparison on the accuracy
of the numerical results produced.

3.3.1 Least Squares Monte Carlo Method Results

We compare the use of basis functions. Through testing we observe that four basis functions
suffices to provide accuracy with any of the polynomials chosen. For the first set of results we
employ as basis functions the first four Laguerre polynomials. For the LSM method we use
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Method S0
European

Value
True
Value

Simulated
Value

Standard
Error

Relative
Error

Time
(s)

80 20.6893 21.6059 21.5985 0.0387 0.0344 5.8374

90 14.4085 14.9187 14.9038 0.0382 0.1001 5.0766

LSM 100 9.6642 9.9458 9.8832 0.0354 0.6294 3.8809

110 6.2797 6.4352 6.3783 0.0306 0.8843 3.0973

120 3.9759 4.0611 4.0208 0.0243 0.9935 2.4243

80 20.6893 21.6059 21.5889 0.0008676 0.0786 6.0103

90 14.4085 14.9187 14.9013 0.0007440 0.1169 4.6148

LSMVR 100 9.6642 9.9458 9.9306 0.0005453 0.1531 3.8209

110 6.2797 6.4352 6.4243 0.0004293 0.1698 3.0200

120 3.9759 4.0611 4.0531 0.0003015 0.1981 2.3938

Table 3.1: Comparison between the LSM and LSMVR algorithms on a simple American put
with parameters K = 100, r = 6%, σ = 40% and T = 0.5. The algorithms are run with 100, 000
sample paths to estimate the regression coefficients and 100, 000 sample paths to then price
the option. In the LSMVR algorithm this is split into 50, 000 antithetic pairs. There are 50
time steps used in the simulation. For these simulations Laguerre polynomials are used as the
basis functions for the regression. The European option value is produced via the Black-Scholes
formula and the true American option values are quoted from [1].

100, 000 sample paths to estimate the regression coefficients and a further 100, 000 to then
estimate the option price. For the LSMVR we use 50, 000 antithetic sample paths for both
parts and utilise the discounted European option as a control variate. For either algorithm
50 time steps are used. Table 3.1 displays the results.

Instantly it is seen that the variance reductions techniques have succeeded, giving much
decreased standard errors in roughly equivalent times. In addition for the LSVMR method,
paths started out of the money (S0 ≥ K) have given superior simulation values and only
slightly worse simulation values for paths started in the money (S0 < K).

All the LSMVR simulation values are within 0.2% of the true value, providing excellent
approximations to the value of our option. The relative error increases with the initial
price value whilst the computation times decrease. This is because these options are out of
the money more frequently and so require their continuation values to be re-evaluated less
often.

We now utilise the polynomials defined in (3.12) as the basis functions, which we call from
here on the choice functions. The results can be seen in Table 3.2. Using these polynomials
produces the same patterns as the Laguerre polynomials, namely the increasing relative error
and decreasing computation times. Variance reduction has again worked well.

The choice functions have produced better estimations with lower relative errors and similar
standard errors. Despite their larger computation times we prefer the use of choice functions
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Method S0
European

Value
True
Value

Simulated
Value

Standard
Error

Relative
Error

Time
(s)

80 20.6893 21.6059 21.6007 0.0377 0.0240 7.7036

90 14.4085 14.9187 14.8979 0.0387 0.1392 6.3043

LSM 100 9.6642 9.9458 9.9292 0.0355 0.1669 5.1246

110 6.2797 6.4352 6.4171 0.0302 0.2810 4.3003

120 3.9759 4.0611 4.0506 0.0244 0.2579 3.4814

80 20.6893 21.6059 21.5926 0.0008619 0.0617 7.8681

90 14.4085 14.9187 14.9062 0.0007354 0.0840 6.3428

LSMVR 100 9.6642 9.9458 9.9319 0.0005496 0.1400 5.1857

110 6.2797 6.4352 6.4251 0.0003901 0.1577 4.3354

120 3.9759 4.0611 4.0542 0.0003098 0.1694 3.5256

Table 3.2: Comparison between the LSM and LSMVR algorithms on a simple American put
with parameters K = 100, r = 6%, σ = 40% and T = 0.5. The algorithms are run with
100, 000 sample paths to estimate the regression coefficients and 100, 000 sample paths to then
price the option. In the LSMVR algorithm this is split into 50, 000 antithetic pairs. There are
50 time steps used in the simulation. For these simulations the polynomials defined in (3.12)
are used as the basis functions for the regression. The European option value is produced via
the Black-Scholes formula and the true American option values are quoted from [1].

due to their superior accuracy and will utilise the LSMVR method with these as the basis
functions in the hybrid algorithm.

3.3.2 Hybrid Method Results

We compare the implementation of sub-optimality checking with both C and C̃. We let C be
the corresponding European value of the option and recall C̃ is the LSMVR approximation
to the continuation value.

For both simulations we run 100, 000 pairs of antithetic sample paths to estimate the coeffi-
cients. To compute the approximations in reasonable time we use 5, 000 pairs of antithetic
paths to compute the option price, with 5, 000 pairs of sub-paths launched when required.
The corresponding European option is utilised as a control variant as before. Due to the
algorithm’s large computation times and since paths out of the money require much less
time to run we alter the number of time steps used for each initial price so that each approx-
imation is computed in roughly equivalent time, attempting to even the amount of resources
used for each case. Each simulation takes roughly 750 seconds. The results are displayed in
Table 3.3.

All the confidence intervals contain the true value for the option, indicating the success of
the hybrid algorithm. The upper bounds computed are not as tight as their lower bound
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C S0
True
Value

LSMVR
Value

Hybrid
Value

Relative
Error

Standard
Error

Confidence
Interval

d

80 21.6059 21.5898 21.6307 0.1146 0.0013 [21.5881, 21.6338] 50

90 14.9187 14.9097 14.9587 0.2680 0.0014 [14.9083, 14.9617] 100

C 100 9.9458 9.9318 10.0140 0.6862 0.0013 [9.9308, 10.0168] 170

110 6.4352 6.4269 6.4930 0.8985 0.0011 [6.4261, 6.4953] 300

120 4.0611 4.0556 4.1010 0.9824 0.00081 [4.0550, 4.1027] 550

80 21.6059 21.5923 21.6682 0.2883 0.0013 [21.5907, 21.6713] 80

90 14.9187 14.9123 15.0352 0.7807 0.0015 [14.9110, 15.0383] 150

C̃ 100 9.9458 9.9382 10.0528 1.10755 0.0015 [9.9372, 10.0560] 290

110 6.4352 6.4273 6.5474 1.7434 0.0023 [6.4265, 6.5520] 550

120 4.0611 4.0543 4.0701 0.2223 0.0049 [4.0533, 4.0797] 950

Table 3.3: Simulation values from the dual method algorithm with sub-optimality checking
implemented through comparison with either C or C̃. Run on a simple American put with
parameters K = 100, r = 6%, σ = 40% and T = 0.5. The algorithms are run with 50, 000 pairs
of antithetic sample paths to estimate the regression coefficients. 5, 000 pairs are then used
to price the option with 5, 000 sub-simulations launched at exercise points. The number of
time steps used is chosen for each initial price to ensure each initial price approximation uses a
roughly equivalent amount of resources, each computation taking approximately 750 seconds.
The relative and standard errors relate to the hybrid value approximation. The true American
option values are quoted from [1].
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counterparts, and we note that the tighter the lower bound is then the tighter its upper
bound equivalent is.

By using C̃ more sub-simulations have been rejected in sub-optimality checking, allowing for
quicker computation times and therefore the use of a larger number of time steps. However, as
expected, the utilisation of C in sub-optimality checking has achieved tighter upper bounds,
since more sub-simulations are launched and the chance of incorrect continuation is nullified.
The confidence intervals are tighter when C has been used and they form a symmetrical
pattern, being tightest for S0 = 80 and S0 = 120 and loosest for S0 = 100. This is expected
since the S0 = 100 case has the largest variance. In near all cases use of C̃ has achieved
tighter lower bounds but looser upper, indicating that allowing the incorrect continuations
introduces a positive bias.

The confidence intervals produced are extremely tight. Comparing to the existing literature,
the computation times are reasonably fast with the utilisation of sub-optimality checking.
From the two methods tried the use of the European option has led to superior approxi-
mations, performing better even though its computational cost limits the number of time
steps that can be used. In the following chapter we extend the hybrid method to price a
game option and in particular combine this with the LSMVR method, aiming to form similar
confidence intervals for the game option price.
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4 Game Options

A Game Option extends an American option by allowing the writer of the option to prema-
turely cancel the option at a penalty. Their set-up is that of a Dynkin game, introduced by
the namesake in his 1969 paper [19]; a Dynkin game is a class of zero-sum games that are
based on optimal stopping. Kyprianou provides explicit solutions to the perpetual version
of the option [39] whilst Kunita and Seko show for a call game option with no dividends
the value function can be represented as a European option with the writer’s premium sub-
tracted [38]. Kühn and Kyprianou show that the case of a game option with a put payoff
(what they call a ‘callable put’) is the composition of exotic options [36].

Not much research has looked into the computational methods for pricing such an option.
Vaczlavik discusses finite element methods [52] whilst solving the stochastic differential game
problem through backward stochastic differential equations is treated by Hamadene [26].
Eliasson approaches the problem through Monte Carlo, utilising a regression based method
and proving convergence to the true value [20]. Kühn et al. proposes a similar dual set-up
in parallel to Rogers work for American options [37]. However their computation is limited,
as in Rogers, by being problem specific and not algorithmic.

Due to their nature, we can obtain several dual formulations to the problem, with each
providing a basis for algorithmically computing the option price. In the American option
case with relative ease we produce positively and negatively biased approximations. This is
something that has not been algorithmically addressed, however, in the case of a game option.
We remedy this by proposing an algorithm, based on the hybrid methods of the American
option, which gives positively and negatively biased approximations. Theoretically this will
lead to the production of upper and lower bounds for the price of a game option, from which
we can construct confidence intervals for the price.

We begin with a subsection formulating the problem formally and deriving dual results. We
extend the LSM method and hybrid algorithm to price game options. We then propose
an algorithm combining these two methods and producing positively and negatively biased
approximations for the game option price. We finish with numerical results and a comparison
of the methods.

4.1 Pricing

We work in a complete market as before, the treatment of game options in incomplete
markets is seen in Kallsen and Kühn [32], and Kühn [35]. Consider two càdlàg processes
(ht)0≤t≤T and (gt)0≤t≤T such that gt = ht + δt, where δt ≥ 0 is a penalty process. A game
option is a contract between the writer and the holder such that either party may exercise
the option at any time, up to the maturity time T . If the holder exercises first they receive
the payoff ht. If the writer cancels first then they must pay the sum of gt = ht + δt to the
holder. If they exercise at the same time the payoff is ht. The pricing of the option translates
to an optimal stopping problem as before, with two stopping times to now consider. Let the
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holder of the option stop according to a stopping strategy τ and the writer of the option
stops according to σ. The payoff of the option becomes

R(τ, σ) = hτ1τ≤σ + gσ1σ<τ . (4.1)

We let δT = 0. Intuitively, the writer of the option will pick σ to try and minimise the
expected value R(τ, σ) whereas the holder chooses τ to maximise it. The theory of zero-sum
Dynkin games gives the unique value of the option.

Definition 4.1. The value of a game option with payoff function (4.1) is given by the process
(Vt)0≤t≤T , where

Vt = inf
σ∈T (t,T )

sup
τ∈T (t,T )

E[bτ∧σR(τ, σ) | Ft]

= sup
τ∈T (t,T )

inf
σ∈T (t,T )

E[bτ∧σR(τ, σ) | Ft].
(4.2)

Kifer showed the following, which we state without proof.

Theorem 4.2. Consider a game option as above, with the fair price given by (4.2) such that
ht has no negative jumps and gt has no positive jumps. Then at time t, the optimal stopping
strategies for the holder and the writer are given by

τ ∗t = inf {s ≥ t : hs ≥ Vs} (4.3a)

σ∗t = inf {s ≥ t : gs ≤ Vs} ∧ T. (4.3b)

The holder’s stopping strategy is as in the American option. The writer’s strategy is again
intuitive, stopping at the first time that continuing gives a higher expected payoff than
exercising immediately.

4.1.1 Dual Formulations

To obtain the dual formulations, we first produce analogue results to that of Theorems 3.6
and 3.7 in the case where only the writer may cancel.

Definition 4.3. Consider a European option with payoff (ht)0≤t≤T in which the writer of
the option may cancel the option at any time up to and including the maturity and pay the
holder of the option a sum gt = ht+δt. We call such an option a cancellable European option
and define the arbitrage-free price W for such an option by

Wt = inf
σ∈T (t,T )

E[bt,σgσ | Ft]. (4.4)

This option obeys similar decompositions to the American option. The proofs of these re-
sults follow through identical arguments to that of the American option. Indeed that the
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Snell envelope of the cancellable European option is a lattice process is shown as before and
the two following Lemmas follow as Theorems 3.6 and 3.7, respectively, with inequality signs
reversed. As such, we omit their proofs.

Lemma 4.4. Assume that the discounted cancellation process btgt is right-continuous and
that for some p > 1, sup0≤t≤T |btgt| ∈ Lp. Then the lower Snell envelope of the cancellable
European option,

Yt := btWt = ess inf
σ∈T (t,T )

E[bσgσ | Ft],

is a càdlàg sub-martingale of Class D.

Thus Y has a Doob-Meyer decomposition

Yt = btWt = W0 + Ñt + B̃t, (4.5)

where Ñ is a unique, uniformly integrable martingale, B̃ is a unique, integrable, increasing,
predictable process and Ñ0 = B̃0 = 0.

Lemma 4.5.
W0 = sup

N∈H1
0

E[ inf
s∈[0,T ]

(bsgs −Ns)], (4.6)

and this supremum is attained when N = Ñ , where Ñ is the martingale from the Doob-Meyer
decomposition in (4.5).

Let Z denote the Snell envelope of the game option price, V . Under suitable conditions we
can form a decomposition of this process up to the maximum of the two stopping times τ
and σ.

Theorem 4.6. Assume that the discounted payoff process btht and penalty process δt are
right-continuous and for some p > 1, sup0≤t≤T |btht| ∈ Lp and sup0≤t≤T |δt| ∈ Lp. Then the
Snell envelope process up to time τ ∨ σ can be decomposed into

Zτ∨σ
t = btV

τ∨σ
t = V0 +M∗

t − At +Bt, (4.7)

where M∗ ∈ H1
0, A is an integrable, non-decreasing, predictable process such that Aτ = 0 and

B is an integrable, non-decreasing, predictable process such that Bσ = 0.

Proof. Let τ ∗ denote the optimal stopping time for the holder of the option and σ∗ denote
the optimal stopping time for the writer of the option, which we can both stop at time T to
guarantee existence. Consider the game option given prior knowledge of σ∗. This has payoff
R(t, σ∗) and value

Vt = sup
τ∈T

E[bτ∧σ∗R(τ, σ∗) | Ft].

This can be viewed as an American option with maturity σ∗ and payoff R(t, σ∗) = ht for
t ≤ σ∗. By Theorem 3.6, since the regularity conditions are satisfied, up to time σ∗ the
discounted price process decomposes as a super-martingale

btVt = V0 + M̃t − Ãt, (4.8)
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where M̃ ∈ H1
0 is unique and Ã is a unique, integrable, increasing, predictable process with

M̃0 = Ã0 = 0. Conversely, by considering the game option with prior knowledge of τ ∗ we
reduce the option to a cancellable European option with maturity τ ∗ and payoff R(τ ∗, s) = gs.
From Lemma 4.4, since regularity conditions are again satisfied, the discounted price process
up to time τ ∗ is a sub-martingale and decomposes as

btVt = V0 + Ñt + B̃t, (4.9)

where Ñ ∈ H1
0 is unique and B̃ is a unique, integrable, increasing, predictable process with

Ñ0 = B̃0 = 0. From (4.8) and (4.9) then Aτ
∗

= 0 and Bσ∗
= 0, and M̃ τ∗∧σ∗

= Ñ τ∗∧σ∗
.

Therefore the discounted price process has decomposition

btV
τ∗∨σ∗

t = V0 +M∗
t − At +Bt, (4.10)

where M∗ ∈ H1
0, with A and B both predictable increasing processes such that Aτ

∗
= 0 and

Bσ∗
= 0. Further, M∗ = M̃ before time σ∗ and M∗ = Ñ before time τ ∗.

Similarly to the American option, the martingale part of the above decomposition, M∗, pro-
vides the means of computing the value of the option path-wise.

Theorem 4.7. Consider the game option as described above. Then

V0 = E

[
sup
t∈[0,T ]

inf
s∈[0,T ]

(bt∧sR(t, s)−M∗
t∧s)

]

= E

[
inf

s∈[0,T ]
sup
t∈[0,T ]

(bt∧sR(t, s)−M∗
t∧s)

]
.

(4.11)

Proof. Let τ ∗ and σ∗ be as above, and write T for T (0, T ). Then,

V0 = sup
τ∈T

E[bτ∧σ∗R(τ, σ∗)]

= E[ sup
t∈[0,T ]

(
bt∧σ∗R(t, σ∗)− M̃t∧σ∗

)
]

= E[ sup
t∈[0,T ]

(bt∧σ∗R(t, σ∗)−M∗
t∧σ∗)]

≥ E[ inf
s∈[0,T ]

sup
t∈[0,T ]

(bt∧sR(t, s)−M∗
t∧s)],

since M̃ = M∗ before the optimal stopping time, and where the second equality follows by
Theorem 3.7. Conversely, we consider knowledge of τ ∗,

V0 = inf
σ∈T

E[bτ∗∧σR(τ ∗, σ)]

= E[ inf
s∈[0,T ]

(
bτ∗∧sR(τ ∗, s)− Ñτ∗∧s

)
]

= E[ inf
s∈[0,T ]

(bτ∗∧sR(τ ∗, s)−M∗
τ∗∧s)]

≤ E[ sup
t∈[0,T ]

inf
s∈[0,T ]

(bt∧sR(t, s)−M∗
t∧s)],
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since Ñ = M∗ before the optimal stopping time, and where the second equality follows by
Lemma 4.5. Together these two inequalities, along with the max-min inequality, give the
required equality.

Further, we construct a formulation of the option price by combining the choice of martin-
gales with a stopping strategy.

Theorem 4.8. Consider the game option as described above. Then

V0 = inf
M∈H1

0

inf
σ∈T

E[ sup
t∈[0,T ]

(bt∧σR(t, σ)−Mt∧σ)] (4.12a)

= sup
M∈H1

0

sup
τ∈T

E[ inf
s∈[0,T ]

(bτ∧sR(τ, s)−Mτ∧s)], (4.12b)

where the infimum and supremum is achieved by M∗, the martingale part from the decom-
position (4.10).

Proof. This is shown through use of Theorem 3.7 and Lemma 4.5. Assuming prior knowledge
of σ∗ and using Theorem 3.7 on the induced American option with maturity σ∗,

V0 = sup
τ∈T

E[bτ∧σ∗R(τ, σ∗)]

= inf
M∈H1

0

E[ sup
t∈[0,T ]

(bt∧σ∗R(t, σ∗)−Mt∧σ∗)]

= inf
M∈H1

0

inf
σ∈T

E[ sup
t∈[0,T ]

(bt∧σR(t, σ)−Mt∧σ)],

where the infimum is attained through M̃ from the decomposition of the American option,
which is equal to M∗ before time σ∗. Similarly using prior knowledge of τ ∗ and by Lemma
4.5 on the induced cancellable European option,

V0 = inf
σ∈T

E[bτ∗∧σR(τ ∗, σ)]

= sup
N∈H1

0

E[ inf
s∈[0,T ]

(bτ∗∧sR(τ ∗, s)−Mτ∗∧s)]

= sup
N∈H1

0

sup
τ∈T

E[ inf
s∈[0,T ]

(bτ∧sR(τ, s)−Mτ∧s)],

where the supremum is attained through Ñ from the decomposition of the cancellable Eu-
ropean option, which is equal to M∗ before time τ ∗.

One final dual formulation is possible. From (4.12b), for any suitable martingale M we can
can consider the embedded optimal stopping problem

V M
0 = sup

τ∈T
E[ inf

s∈[0,T ]
(bτ∧sR(τ, s)−Mτ∧s)].

If M is suitably bounded, this is seen as an American option and using Thoerem 3.7 we can
consider the dual. This gives the price of the game option as

V0 = sup
M∈H1

0

inf
N∈H1

0

E

[
sup
t∈[0,T ]

{
inf

s∈[0,T ]
(bt∧sR(t, s)−Mt∧s)−Nt

}]
,
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with equality when M is the martingale part of the decomposition of the game option and
N is the martingale part from the decomposition of the Snell envelope of the embedded
optimal stopping problem V M . This formulation is not as intuitive as the above and will
be hard to use computationally, since the construction of a good approximating martingale
to N is costly. Additionally, the approximation produced will be neither positively nor
negatively biased. We will therefore make no use of this result in algorithmically pricing the
option.

4.2 Algorithmic Methods

Whilst the LSM method has previously been utilised to produce approximations for the
value of the game option, no paper has dealt with the production of positively and negatively
biased approximations. Here, we present a new algorithm to do such, extending the hybrid
approach of the American option to the game option case. Through this, we theoretically
produce approximations of a positive and negative bias which in the continuous time case
would give upper and lower bounds to the value of the game option.

We build to the presentation of this algorithm by outlining the dynamic programming prin-
ciple for the game option, the LSMVR approach that accompanies it, and discussing how a
constructed martingale can be used to approximate the price. We then present the proposed
algorithm giving a discussion of techniques and possible improvements. We conclude the
chapter with numerical results and a comparison of algorithms.

4.2.1 Least Squares Monte Carlo Method

Let {0 = t0 < · · · < td = T} and suppress notation as before, letting i denote ti. The
continuation value of the game option at time i is

Ci = E[bi,i+1Vi+1 | Fi], (4.13)

where Vi is the value of the game option at time i and Cd = 0. At each time step the holder
exercises if their immediate exercise value hi is greater than or equal to the continuation
value Ci, and the writer cancels if the immediate cancellation value gi is less than or equal
to the continuation value Ci. This defines a backwards programming principle,

Vd = gd = hd

Vi = min(gi,max(hi, Ci)),
(4.14)

for i = 1, . . . , d− 1. Then V0 = C0, and the C-value recursion is given by

Ci = E[bi,i+1 min (gi+1,max (hi+1, Ci+1)) | Fi]

Cd = 0.
(4.15)

Construction of the continuation values provides exercise strategies for both the holder and
the writer,

τ = min {i = 1, . . . , d : hi ≥ Ci}
σ = min {i = 1, . . . , d : gi ≤ Ci} ∧ T,

(4.16)
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discretised versions of (4.3a) and (4.3b). The option is valued via

V0 = C0 = E[bτ∧σR(τ, σ)]. (4.17)

The LSMVR method altered to reflect the new programming principle computes regression
coefficients for the continuation value functions. The option is then priced by (4.17) using the
the stopping strategies defined by (4.16). In the American option only paths in the money
were used for the regression. Since now the writer can cancel early, paths out of the money
still contain valuable information and must be included in the least-squares regression.

There is an important distinction from the American option. The value of the option in
(4.2) is formulated through both a supremum and an infimum. Therefore we cannot expect
the approximation produced by the LSMVR method to form an upper or lower bound for
the option price.

4.2.2 Martingale Method

By Theorem 4.7, knowledge of M∗ values the game option through (4.11). As with the
American option we construct an approximation to M∗. We define an indicator process It,
which at each point in time indicates whether the holder should exercise or the writer should
cancel, and is zero otherwise. Note that that this indicator process takes into account both
the holder and writer’s decision process. We construct the martingale as before,

M0 = Ṽ0

Mi+1 = Mi + bi+1Ṽi+1 − biCi.
(4.18)

for i = 0, . . . , d− 1, where Ṽ is an approximate value process for the game option.

The game option variant of the LSMVR algorithm is used to find coefficients for the con-
tinuation value functions, which we use to build the above martingale. An approximation is
then computed via (4.11). As with the LSMVR method we cannot expect the approximation
to form either an upper or lower bound for the option price.

4.2.3 Biased Approximation Method

We develop a new approach, extending the hybrid method and combining it with the LSMVR
method to produce theoretically positively and negatively biased approximations. Theorem
4.8 provides the basis for this. By selection of a martingale M and stopping strategy σ
for the writer we theoretically attain an upper bound via (4.12a). Similarly, through a
martingale M and stopping strategy τ for the holder we theoretically achieve a lower bound
via (4.12b).

The optimal martingale can be approximated by (4.18) and the optimal stopping strategies
for either party are approximated by (4.16). We note that when approximated there is no
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guarantee that the values produced will give true upper and lower bounds due to any simula-
tion errors. A pseudo-algorithm for the computation of the positively biased approximation
is seen in Algorithm 4.1.

Algorithm 4.1 Game Option Upper Bound algorithm

1: Launch N1 paths and use LSMVR method to compute regression coefficients.
2: Launch N2 independent paths.
3: Use LSMVR method to compute approximation Ṽ0.
4: for n = 1 : N2 do
5: Set M̃n

0 = Ṽ0.
6: for i = 1 : d do
7: Compute Cn

i , hni , gni and Ṽ n
i

8: if Cn
i ≥ gni or i = d then

9: Set σ̃ = i.
10: Set R(j, σ̃) = R(i, σ̃) and Mn

j = Mn
i for j = i+ 1, . . . , d.

11: break
12: else
13: Set R(i, σ̃) = hni .
14: if Ci ≤ hi then
15: Launch N3 subpaths from Sni .

16: Compute biC
n
i = E[bi+1Ṽ

n
i+1 | Fi].

17: else
18: Set biC

n
i = biṼ

n
i .

19: end if
20: Set Mn

i+1 = Mn
i + bi+1Ṽ

n
i+1 − biCn

i .
21: end if
22: end for
23: Compute V̄ n

0 = maxi=1,...,d (bi∧σ̃R(i, σ̃)−Mn
i∧σ̃).

24: end for
25: Compute V̄0 = 1

N2

∑N2

n=1 V̄
n
0 .

For clarity we briefly run through the steps. The first steps run the game option alteration
of the LSMVR method from subsection 4.2.1 to compute the regression coefficients for the
continuation value functions at each time point. To compute the value of the option N2

independent paths are generated and we compute an approximation to the value of the
option via the LSMVR method. Recalling (4.12a) to compute the positively biased value we
approximate the optimal stopping strategy for the writer, σ̃, and the martingale part from
the decomposition of the Snell envelope. To do this, for each of the N2 subpaths we build a
martingale Mn. This martingale is set as Ṽ0 initially and built through (4.18). At each time
step we also need know the immediate option value Rn(t, σ̃).

To find both Mn and Rn(t, σ̃) at each time step we compute the continuation value Cn
i using

the regression coefficients and the LSMVR approximation for the value of the option at that
time. The immediate exercise and cancellation prices are also found. We then check whether
the writer should cancel using (4.16). If cancellation is indicated, the approximate stopping
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time σ̃ is set as the current time step and Mn and Rn(j, σ̃) are stopped, exiting the time
step loop.

If cancellation is not indicated then we need compute new values for Mn and Rn(j, σ̃).
Rn(j, σ̃) is set as the exercise value. To compute Mn we need find biC

n
i . To do so, we

first check whether the holder should exercise. If exercise is indicated launch N3 subpaths
from the current state and compute biC

n
i through a one-step computation. If exercise is not

indicated set biC
n
i to the current option value.

Now Rn(i, σ̃) and Mn have been computed for all time steps we find the largest difference
between the discounted immediate option value and the approximating martingale. This
gives a positively biased approximation for the value of the game option for this single path.
Finally we compute the Monte Carlo estimate.

An algorithm is similarly composed to produce a negatively biased value, by stopping the
processes as soon as the holder exercises.

4.3 Numerical Results

We price a game option on a single underlying asset following a GBM, with put payoff
ht = (K−St)+ and constant penalty process δt = δ. The following parameters are used:

K = 100,

r = 6%,

σ = 40%,

T = 0.5,

δ = 5,

with S0 varying. The true values quoted are from Kühn et al. [37].

4.3.1 Least Squares Monte Carlo Method Results

We utilise the choice functions defined by (3.12) as our basis functions for the regression.
We tested the use of Laguerre polynomials and, whilst these were found to be quicker,
they provided significantly less accurate results. We use 100, 000 pairs of antithetic pairs
to estimate the regression coefficients and a further 100, 000 pairs to value the option. The
game option is much more sensitive to the number of time steps used and we therefore utilise
at least 500 time steps. We alter the number of time steps used for each initial price so that
each approximation is computed in roughly equivalent time, with each simulation taking
about 143 seconds. The results can be seen in Table 4.1.

The algorithm has produced reasonably accurate approximations to the true value of the
option in sensible time. Noticeably the approximations worsen when the asset is started out
of the money. The writer looks to cancel when the continuation value of the option is higher
than the current exercise value plus the penalty. This region of space is located close to the
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S0
European

Value
True
Value

LSMVR
Value

Standard
Error

Relative
Error

Relative
SE

d

80 20.6893 20.6 20.5998 0.0196 0.000971 0.0949 500

90 14.4085 12.4 12.4183 0.0228 0.1475 0.1837 520

100 9.6642 5.00 5.4248 0.0061 8.4967 0.1119 570

110 6.2797 3.64 3.7836 0.0056 3.9457 0.1468 600

120 3.9759 2.54 2.6228 0.0061 3.2312 0.2325 642

Table 4.1: Using the LSMVR method to approximate the value of a put game option with
parameters K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5. The algorithms are run with
100, 000 sample path pairs to estimate the regression coefficients and 100, 000 sample path
pairs to then price the option. The number of time steps used is chosen for each initial price
to ensure each initial price approximation uses a roughly equivalent amount of resources, each
computation taking approximately 143 seconds. The European option value is produced via
the Black-Scholes formula and the true game option values are quoted from [37].

European True d

S0 Value Value 50 100 250 500 1000

80 20.6893 20.6 20.8299 20.7433 20.6716 20.5977 20.5456

90 14.4085 12.4 12.8824 12.6971 12.4805 12.4250 12.3393

100 9.6642 5.00 6.3442 5.9596 5.6340 5.4480 5.3222

110 6.2797 3.64 4.0715 3.9513 3.8397 3.7937 3.7501

120 3.9759 2.54 2.8279 2.7487 2.6692 2.6354 2.6080

Table 4.2: Investigating changing number of time steps in the LSMVR algorithm for simulat-
ing a put game option with parameters K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5. The
algorithms are run with 100, 000 sample path pairs to estimate the regression coefficients and
100, 000 sample path pairs to then price the option. The European option value is produced
via the Black-Scholes formula and the true game option values are quoted from [37].

strike price of the option, where the current exercise value is low but the continuation value
is still relatively high. These cancellations occur more frequently in the algorithm for paths
in the money more often, driving down the value of the option near its true value. As with
American options, the computation time decreases for options more frequently out of the
money since they require less frequent re-evaluation of their continuation values, allowing
use of a greater number of time steps.

The use of at least 500 time steps to attain a good approximation is much greater than the
50 needed for an American option. We investigate how changing the number of time steps
affects the approximation. We run the algorithm with 50, 100, 250, 500 and 1, 000 time
steps for each initial price. The results can be seen in Table 4.2 and graphically in Figure
4.1.
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Figure 4.1: Convergence of the LSMVR simulation value of a put game option for increasing
number of time steps. Parameters used are K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5.
The algorithms are run with 100, 000 sample path pairs to estimate the regression coefficients
and 100, 000 sample path pairs to then price the option.

In each of the cases we see convergence towards the true value with overshooting occurring
in the first two cases. As expected, increasing the number of time steps has improved the
approximations. We note that this convergence always occurs from above. This is expected
since it is known that the value of the game option is lower than the value of the corresponding
European option, thus providing an early exercise feature is more beneficial to the writer
of the option than the holder. Therefore increasing the number of time steps benefits the
writer over the holder, decreasing the approximated value.

4.3.2 Martingale Method Results

For comparison, it is of interest to see how well any martingale will price the game option
through (4.11). We compare the use of the discounted European option martingale and the
constructed martingale (4.18), built through LSMVR approximations.

Since the construction of the European martingale is simple via Black-Scholes, we can imple-
ment high numbers of sample paths with a high number of time steps. This is not possible for
the constructed martingale where building the martingale is costly on time resources. This
brings forth a comparison between a good approximating martingale built on few sample
paths and time steps, and a mediocre approximating martingale built on a larger number
of sample paths. For the European option we use 50, 000 pairs of sample paths over 500
time steps, with each computation taking roughly 900 seconds. For the approximating mar-

30



Martingale S0
True
Value

Martingale
Value

Standard
Error

Relative
Error

Relative
SE

d

80 20.6 21.6616 0.0028 5.1533 0.0131 500

90 12.4 12.4501 0.0050 0.4042 0.0406 500

European 100 5.00 5.2035 0.00066 4.0710 0.0127 500

110 3.64 3.0587 0.0034 15.9698 0.1105 500

120 2.54 2.4381 0.0043 4.0130 0.1748 500

80 20.6 20.7765 0.0016 0.8568 0.00770 100

90 12.4 12.5684 0.0020 1.3581 0.0159 175

Constructed 100 5.00 5.6406 0.00050 12.8113 0.0089 250

110 3.64 3.7817 0.00038 3.8918 0.0100 400

120 2.54 2.5934 0.00037 2.1034 0.0141 600

Table 4.3: Using (4.11) with two different martingales to approximate the value of a put game
option with parameters K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5. For the European
martingale 50, 000 sample path pairs are used. For the constructed martingale 100, 000 pairs
of antithetic paths are used to compute the regression coefficients but then only 5, 000 pairs of
antithetic paths to compute the value of the option and 5, 000 pairs of sub-paths. The number
of time steps used is chosen for each initial price to ensure each approximation uses a roughly
equivalent amount of resources, each computation taking approximately 900 seconds. The true
game option values are quoted from [37].

tingale we use 100, 000 pairs of antithetic paths to compute the regression coefficients but
then only 5, 000 pairs of antithetic paths to compute the value of the option and 5, 000 pairs
of sub-paths. We alter the number of time steps used to ensure that each initial price uses
an equivalent amount of resources in computing the value, with each computation taking
roughly 900 seconds. Since the corresponding European option no longer provides a lower
bound on the value option we cannot implement it in sub-optimality checking. Instead we
rely on C̃ to be a good approximation to the continuation values. A control variant was ex-
cluded as when tested it did not significantly improve results and, with such large numbers
of time steps, added to the computational time. The results can be seen in Table 4.3.

The European option gives a wide array of results with a good approximation for S0 = 90
but poor approximations for the other cases, especially in the disastrous case of S0 = 110.
By using the European option we are in some sense attempting to solve the problem blind,
ignoring any knowledge we may have of what form the optimal martingale takes. It is thus
not surprising that for most cases the use of the European martingale is not brilliant.

The constructed martingale produces similar results to the LSMVR algorithm. Approxi-
mations are reasonable for each case except when the initial price is the same as the strike
price. With starting prices in or at the money the LSMVR algorithm has outperformed
this martingale approach, especially considering the LSMVR algorithms were run in roughly
a sixth of the time. Interestingly in the cases initially out of the money the martingale
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S0
True
Value

Negative
Value

Positive
Value

Lower
SE

Upper
SE

Confidence
Interval

d

80 20.6 20.4704 20.8596 0.0281 0.0013 [20.4153, 20.8621] 100

90 12.4 12.5237 12.6132 0.00034 0.0021 [12.5230, 12.6173] 180

100 5.00 5.6403 5.6643 0.00062 0.00068 [5.6396, 5.6657] 260

110 3.64 3.7762 3.7914 0.00074 0.00042 [3.7747, 3.7923] 500

120 2.54 2.5821 2.5971 0.00031 0.00038 [2.5815, 2.5978] 900

Table 4.4: Results from proposed Algorithm 4.1 in approximating the value of a put game
option with parameters K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5. The algorithms
are run with 100, 000 sample path pairs to estimate the regression coefficients but then only
5, 000 sample path pairs to then price the option, with 5, 000 sub-paths launched at sub-
simulations. The number of time steps used is chosen for each initial price to ensure each
initial price approximation uses a roughly equivalent amount of resources, each computation
taking approximately 900 seconds. The true game option values are quoted from [37].

approximation outperforms the LSMVR approach, especially when S0 = 120. However, it
was found that when the LSMVR algorithm was allowed to run on an equal amount of time
resources it subsequently performed better than the martingale approach. Therefore, if an
approximation to the price of a game option is required it is preferable to utilise the LSMVR
algorithm, unless the computation of a good approximating martingale can be achieved in
much faster time.

4.3.3 Biased Approximation Method Results

We now implement proposed Algorithm 4.1 and a parallel one to compute a negatively biased
approximation. We run both sides of the algorithm along the same computation to save time.
The ultimate aim is that these positively and negatively biased results will form upper and
lower bounds to the value of the option, respectively, and which can be used to produce a
confidence interval for the game option price.

The computation time for this algorithm is similar to that of the martingale approach.
Therefore, as before, we use 100, 000 pairs of antithetic paths to compute the regression
coefficients but then only 5, 000 pairs of antithetic paths to compute the value of the option
and 5, 000 pairs of sub-paths at sub-simulations. Again, we alter the number of time steps
used to ensure that each initial price uses an equivalent amount of resources in computing
the value, with each computation taking roughly 900 seconds. Results are seen in Table 4.4.

Disappointingly, in all cases except the first the negatively biased value produced is higher
than the true value of the option. Indeed only for S0 = 80 has a confidence interval been
produced which contains the true value of the option. Discretising has introduced a positive
bias into the simulations which has dominated the negative bias, preventing lower bounds
to the value of the option being produced. If true values to the corresponding Bermudan
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game option were known then the algorithm certainly produces upper and lower bounds to
these. However here, as we approximate continuous time, simulation errors have not made
this possible.

All the confidence intervals produced do contain the simulated values from the martingale
approach. This bounding of the martingale approach is expected from the formulation.
Should the martingale method achieve its supremum over t at a time similar to that of the
optimal stopping strategy of the holder then the path-wise approximation will be tighter
to the upper bound. Conversely, if the infimum over s is achieved at a time close to the
optimal stopping strategy of the writer then the lower bound produced will be much tighter
to the martingale method value. If the martingale method produces simulation values close
to the true value our proposed algorithm will give good confidence intervals for the game
option price. For this to be the case we must reduce the discretisation error by increasing
the number of time steps used in the simulation.

We therefore compute simulation values for increasing numbers of time steps. We run Algo-
rithm 4.1, with the lower bound computation included, for 50, 100, 250, 500 and 1, 000 time
steps. In the same simulation we compute the martingale method approximation to observe
how tight the bounds are to this value. The results are seen in Table 4.5 and graphically in
Figure 4.2, where the path-wise approximations are plotted as points.

As above, we observe that for lower numbers of time steps the positive bias introduced
through the discretisation error has prevented the production of lower bounds. However,
in all cases convergence towards a confidence interval containing the true value occurs with
both S0 = 80 and S0 = 90 giving true upper and lower bounds when 1, 000 time steps have
been used. The values form tight bounds around the martingale approximation in all cases
except for the unusually wide interval produced in the first case. This case was ran multiple
times and the same pattern occurred each time. The positive approximation error and the
convergence from above strengthen the hypothesis that increasing the number of time steps
benefits the writer more than the holder.

Some interesting trends have emerged. In paths more frequently in the money the martingale
method approximation is much tighter to the upper bound. From the above comments, we
deduce that for paths more frequently in the money taking a supremum over all the time
steps is roughly equivalent to the usage of the discretised optimal stopping strategy of the
holder in (4.16). Conversely, when paths are more frequently out of the money tight lower
bounds to the martingale method approximation are achieved and looser upper bounds.
Similarly, we infer that for paths often out of the money taking an infimum over all time
steps is roughly equivalent to the discretised optimal cancellation strategy for the writer in
(4.16). The most impressive results have been produced for S0 = 100. Here the martingale
method approximation lies roughly at the midpoint of the biased values, which are both tight
around the martingale method approximation. We attribute this to the fact that paths are
out and in the money an even amount of time and so the taking of supremums and infimums
is roughly equivalent to both the optimal stopping strategy for the holder and the writer,
respectively.

If a large enough number of time steps were used then true upper and lower bounds would
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True d

S0 Value Method 50 100 250 500 1000

Negative 20.8302 20.6840 20.5857 20.6478 20.4805

80 20.6 Martingale 20.8566 20.7802 20.8031 20.9584 20.7262

Positive 20.8620 20.7860 20.8109 20.9662 20.7333

Negative 12.7896 12.8099 12.5471 12.4403 12.2738

90 12.4 Martingale 12.8217 12.9080 12.5561 12.4820 12.3934

Positive 12.8297 12.9194 12.5644 12.4915 12.4080

Negative 6.3024 6.0131 5.6655 5.4122 5.2807

100 5.00 Martingale 6.3073 6.0230 5.6703 5.4153 5.2837

Positive 6.3113 6.0302 5.6785 5.4233 5.2919

Negative 4.0819 3.9212 3.8242 3.8010 3.7545

110 3.64 Martingale 4.0849 3.9252 3.8267 3.8046 3.7591

Positive 4.0921 3.9345 3.8367 3.8161 3.7696

Negative 2.8334 2.6968 2.6256 2.6168 2.5889

120 2.54 Martingale 2.8385 2.6993 2.6262 2.6214 2.5954

Positive 2.8453 2.7081 2.6364 2.6338 2.6079

Table 4.5: Investigating changing number of time steps in Algorithm 4.1 for simulating a put
game option with parameters K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5. The algorithms
are run with 100, 000 sample path pairs to estimate the regression coefficients and 5, 000 sample
path pairs to then price the option, with 5, 000 sub-paths launched at sub-simulations. The
true game option values are quoted from [37].
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Figure 4.2: Convergence of the Algorithm 4.1 simulation values for a put game option with
an increasing number of time steps. Martingale method approximations are plotted as crosses.
Parameters used are K = 100, r = 6%, σ = 40%, T = 0.5 and δ = 5. The algorithms are run
with 100, 000 sample path pairs to estimate the regression coefficients and 5, 000 sample path
pairs to then price the option, with 5, 000 sub-paths launched at sub-simulations.
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be produced for the game option price. We run the three cases S0 = 100, S0 = 110 and
S0 = 120 with larger number of time steps to test this. However, even with 4, 000 time
steps the negatively biased approximation lies above the true value. In each case the stated
convergence is still present but computational limitations have prevented us to achieve the
desired bounds, with convergence slowest for the S0 = 100 case.
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5 Conclusions

Due to their importance in the financial sector, the pricing of American options is still a
vibrant area of research. Monte Carlo methods are a popular method for pricing these
options, especially in cases where the option depends on multiple assets or has complex
payoffs. In this dissertation we have reviewed two of the main algorithms for pricing an
American option, namely the least-squares regression method (LSM) proposed by Longstaff
and Schawrtz [40] and the hybrid algorithm proposed by Andersen and Broadie [2]. We have
then extended these methodologies to the game option case and proposed an algorithm to
produce positively and negatively biased values for the game option price.

Applying variance reduction techniques and several time-saving features the LSMVR method
was shown to produce extremely good approximations to the value of the American option,
as has been previously seen in the literature. Due to the negative bias of this method, this
has led to the production of tight lower bounds to the American option value. Using the
dual formulation of the problem, by use of a martingale, we achieved a positively biased
approximation. Using the LSMVR method, we constructed such a martingale and with
this attained upper bounds for the American option price. This hybrid approach produced
confidence intervals for the value of the option. These confidence intervals were shown to
be very tight around the true value of the option and indicate the success of the hybrid
algorithm.

Using the American option methods as inspiration, we hoped to emulate similar results for
the game option. In this direction, we began by formulating several different dual results for
the value of the game option, with each indicating a varying method for computation of the
option price. The LSMVR method was shown to be adaptable to the game option case and
produce reasonable approximations with good convergence when increasing the number of
time steps used. Equally via the construction of a martingale a reasonable approximation
to the option price is found.

No attempt at constructing confidence intervals for the price of a game option had been seen
in the literature. Attempting to remedy this, and using Theorem 4.8 as the theoretical basis,
we proposed an algorithm that, through the selection of a martingale and a stopping strategy
for either the writer or the holder, produced positively or negatively biased approximations
to the game option price, respectively.

Time discretisation introduces a positive bias into the simulation which counteracts the
negatively biased result and when few numbers of time steps were used a true lower bound
was not produced. This positive bias is due to increasing the number of exercise opportunities
benefiting the writer of the option more than the holder, as can be seen by the fact that a
game option is priced lower than the corresponding European option. If true values were
known for the Bermudan variant of the game option then these values would provide bounds
for them. Instead, we must increase the number of time steps used to reduce the effect of the
discretisation error. When a high enough number of time steps are used then the proposed
algorithm should produce a true confidence interval for the value of the option. We were
able to achieve this point for both of the cases started in the money. However, even when
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an extremely high number of time steps were used for cases started out of the money the
convergence was shown to not be fast enough to achieve true confidence intervals in sensible
time.

The high number of time steps required is extremely costly computationally taking well over
an hour to simulate. Therefore the optimisation of the above algorithm is a sensible next
step. Constructing the martingale is the time limiting step and its optmisation should come
under first examination. Alternatively, one could look at constructing a better approximating
martingale. Letting sub-paths run until they are stopped instead of the one-step computation
used here may provide more accurate results, however this comes at a computational cost
unless better optimised. The boundedness conditions that need to be satisfied by the payoff
and cancellation processes ht and gt are relatively general and so a more complex payoff
function that depends on the path of the asset could be implemented, as in Asian options.
It would be of interest to see whether the proposed algorithm works as successfully in these
cases, or when the option depends on a higher number of underlying assets.
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A MATLAB Code

Included here is MATLAB code written by the author in the valuation of American and
game options. The first section includes various small functions written and used in the
computations. The second section contains two of the main scripts used. One is the val-
uation of an American option with sub-optimality checking through comparison with the
European option. The other is the proposed Algorithm 4.1 to compute positively biased
approximations to the game option price, with the negatively biased approximation compu-
tation also included. These codes are chosen as they utilise several of the techniques used in
the dissertation including: computation of regression coefficients, valuation of both options
through the LSM method, variance reduction techniques, sub-optimality checking and other
time-saving features.

A.1 Sub-functions

A.1.1 Black-Scholes European Option Function

1 function [BSprice] = BSput(K,T,r,s,S0);
2 % Function that takes in parameters for a European put option and outputs
3 % the Black-Scholes solution.
4 % K = strike price
5 % T = maturity
6 % r = interest rate
7 % s = volatility
8 % S0 = initial price
9

10 % Now calculate the BS explicit value
11 d1 = (log(S0/K) + (r + sˆ2/2)*T)/(s*sqrt(T));
12 d2 = (log(S0/K) + (r - sˆ2/2)*T)/(s*sqrt(T));
13 d2 = normcdf(-d2)*K*exp(-r*T);
14 d1 = normcdf(-d1).*S0;
15

16 BSprice = d2 - d1;

A.1.2 Laguerre Polynomial Generator

1 function Y = Laguerre(k,S);
2 % Function that takes in a data vector S and calculates the kth Laguerre
3 % polynomial.
4

5 if (k==0)
6 Y = 1;
7 elseif (k==1)
8 Y = 1-S;
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9 else
10 Y = (1/k)*((2*k-1-S).*Laguerre(k-1,S)-(k-1)*Laguerre(k-2,S));
11 end
12

13 end

A.1.3 Generate Basis Functions with Laguerre Polynomials

1 function basisFunctions = generateBasisFunctions(S,M);
2 % Function that takes in a data vector S and generates a matrix containing
3 % the basis values for each path, using the Laguerre polynomials as basis
4 % functions.
5 % M = number of basis functions
6 % K = strike price
7 % T = maturity
8 % r = interest rate
9 % s = volatility

10

11 % Initialise
12 basisFunctions = zeros(length(S),M);
13

14 % %% Laguerre
15 for i = 1:M
16 % Find the Laguerre polynomial value for the numer of basis functions
17 % required.
18 basisFunctions(:,i) = Laguerre(i-1,S);
19 end
20

21 end

A.1.4 Choice Polynomial Generator

1 function Y = choiceFunctions(k,S,K,T,r,s);
2 % Function that takes in a data vector S and calculates the kth choice
3 % polynomial, as defined in the text.
4 % K = strike price
5 % T = maturity
6 % r = interest rate
7 % s = volatility
8

9 if (k==0)
10 % Strike price.
11 Y = K;
12 elseif (k==1)
13 % Current state.
14 Y = S;
15 elseif (k==2)
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16 % Equivalent European put option price.
17 Y = BSput(K,T,r,s,S);
18 else
19 % Current state multiplied by the equivalent European put option price.
20 Y = S.*BSput(K,T,r,s,S);
21 end
22

23 end

A.1.5 Generate Basis Functions With Choice Functions

1 function basisFunctions = generateChoiceFunctions(S,M,K,T,r,s);
2 % Function that takes in a data vector S and generates a matrix containing
3 % the basis values for each path, using the choice functions as basis
4 % functions.
5 % M = number of basis functions
6 % K = strike price
7 % T = maturity
8 % r = interest rate
9 % s = volatility

10

11 % Initialise
12 basisFunctions = zeros(length(S),M);
13

14 for i = 1:M
15 % Find the choice function value for the numer of basis functions
16 % required.
17 basisFunctions(:,i) = choiceFunctions(i-1,S,K,T,r,s);
18 end
19

20

21 end

A.1.6 LSMVR American Option Coefficients Function

1 function [beta] = LSMregressioncoefficientsAntithetic(K,T,r,s,S0,N,d,M)
2 % Function that calculates the coefficients for the continuation value
3 % approximation function by regression using the LSM method. Variance
4 % reduction techniques (antithetic variates) are
5 % applied.
6 % K = strike price
7 % T = maturity
8 % r = interest rate
9 % s = volatility

10 % S0 = initial price
11 % N = number of sample paths
12 % d = number of time steps
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13 % M = number of basis functions
14

15 dt = T/d; % Calculate time step size.
16

17 %% Generate sample paths
18 % First generate the sample paths in a matrix. Each column corresponds to a
19 % different path.
20

21 % Initialise
22 S = zeros(d+1,2*N);
23

24 S(1,:) = S0; % first entry is initial price
25

26 for i = 2:d+1;
27 Z = randn(1,N);
28 Z = [Z,-Z]; % create antithetic pairs
29 S(i,:) = S(i-1,:).*exp((r - sˆ2/2)*dt + s*Z*sqrt(dt));
30 end
31

32 %% Calculate the payoff matrix
33 % h is the payoff matrix. Each column corresponds to the immediate payoffs
34 % along a path at each time. Note that time 0 is not included.
35 h = max(K-S(2:d+1,:),0);
36

37 %% Calculate regression coefficients
38 C = zeros(1,2*N); % continuation values for each path.
39 beta = zeros(d,M); % matrix to store the regression coefficients includes
40 % time 0 but not time d.
41

42 % Work backwards from maturity. First at time d.
43 C(1,:) = exp(-r*dt).*h(d,:); % set continuation value as exercise value
44

45 for i = d-1:-1:1
46 % At time i find where asset is in the money.
47 I = S(i+1,:) < K;
48 Iindex = find(S(i+1,:)<K);
49

50 X = S(i+1,I)'; % only paths in the money.
51

52 % We retrieve the continuation values for paths in the money.
53 Csub = C(1,I);
54

55 Y = Csub'; % transpose.
56

57 % CHOOSE either basis polynomials or choice functions.
58 %D = generateBasisFunctions(X,M); % design matrix
59 D = generateChoiceFunctions(X,M,K,(d-i)*dt,r,s);
60

61 betaSub = D\Y; % coefficients using least squares regression
62 beta(i+1,:) = betaSub; % add to the coefficient matrix
63

64

65 contValue = D*betaSub; % continuation value
66 exerciseValue = max(K - X,0); % immediate exercise value

45



67

68 % Check when to update the continuation values for paths in the money.
69 Icont = find(contValue <= exerciseValue & exerciseValue > 0)';
70

71 C(1,Iindex(Icont)) = exerciseValue(Icont); % update these paths
72

73 % Continuation values are discounted one more time step.
74 C(1,:) = exp(-r*dt).*C(1,:);
75 end

A.1.7 LSMVR Game Option Coefficients Function

1 function [beta] = gameOptionCoefficients(K,T,r,s,S0,N,d,M,delta)
2 % Function to calculate the regression coefficients using the LSM method.
3 % These regression coefficients can then be used to provide an exercise
4 % strategy to be used in Anderon/Broadie simulation. Function that
5 % calculates the coefficients for the continuation value approximation
6 % function for a game option by regression using the LSM method. Variance
7 % reduction techniques (antithetic variates and control variates) are
8 % applied.
9 % K = strike price

10 % T = maturity
11 % r = interest rate
12 % s = volatility
13 % S0 = initial price
14 % N = number of sample paths
15 % d = number of time steps
16 % M = number of basis functions
17 % delta = fixed penalty
18

19 dt = T/d; % calculate the time step size
20

21 %% Generate sample paths
22 % First generate the sample paths in a matrix. Each column corresponds to a
23 % different path.
24

25 % Initialise
26 S = zeros(d+1,2*N);
27

28 S(1,:) = S0; % first entry is initial price
29

30 for i = 2:d+1;
31 Z = randn(1,N);
32 Z = [Z,-Z]; % create antithetic pairs
33 S(i,:) = S(i-1,:).*exp((r - sˆ2/2)*dt + s*Z*sqrt(dt));
34 end
35

36 %% Calculate the payoff matrix
37 % h is the payoff matrix. Each column corresponds to the immediate payoffs
38 % along a path at each time. Note that time 0 is not included.
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39 h = max(K-S(2:d+1,:),0);
40

41 %% Calculate regression coefficients
42 C = zeros(1,2*N); % continuation values for each path.
43 beta = zeros(d,M); % matrix to store the regression coefficients includes
44 % time 0 but not time d.
45

46 % Work backwards from maturity. First at time d.
47 C(1,:) = exp(-r*dt).*h(d,:); % set continuation value as exercise value
48

49 for i = d-1:-1:1
50

51 X = S(i+1,:)'; % paths at current time step
52 Y = C(1,:)'; % tranpose of continuation values
53

54 % CHOOSE either basis polynomials or choice functions.
55 %D = generateBasisFunctions(X,M); % design matrix
56 D = generateChoiceFunctions(X,M,K,(d-i)*dt,r,s);
57

58 betaSub = D\Y; % coefficients using least squares regression
59 beta(i+1,:) = betaSub; % add to the coefficient matrix
60

61 contValue = D*betaSub; % continuation value
62 exerciseValue = max(K-X,0); % immediate exercise value
63 penaltyValue = exerciseValue + delta; % immediate cancellation value
64

65 % Update the continuation values and discount back one time step.
66 C(1,:) = exp(-r*dt).*min(penaltyValue,max(exerciseValue,contValue));
67

68

69 end
70

71 end

A.2 Main Functions

A.2.1 Dual Positively Biased Simulation Value Function with European Option
Sub-Optimality Checking

1 function [lowerBound,europeanValue,upperBound,upperStdError,totaltime,CI]...
2 = americanDualEuropeanSubOptimality(S0,d);
3 %% American Option Dual Valuation with European Sub-Optimality Checking
4 % Function that calculates a high-biased approximation to the value of an
5 % American put option on single asset following a geometric Brownian
6 % motion. Variance reduction techniques (antithetic variates and control
7 % variates) are applied. Sub-optimality checking is implemented by
8 % comparison with the corresponding European option. A low-biased
9 % approximation is also produced using the LSMVR method.

10 % S0 = initial price
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11 % d = number of time steps
12

13 tic; % start timer
14

15 %% Set up variables
16 K = 100; % strike price
17 T = 0.5; % maturity
18 r = 0.06; % interest
19 s = 0.4; % volatility (sigma)
20 N = 1*10ˆ5; % number of sample paths for coefficients
21 N2 = 5*10ˆ3; % number of sample paths for upper bound
22 N3 = 5*10ˆ3; % number of sub-path loops
23 M = 4; % number of basis functions
24 dt = T/d; % size of each timestep
25

26 %% First find European value
27 europeanValue = BSput(K,T,r,s,S0)
28

29 %% Calculate Regression Coefficients
30 % Utilise the LSMVR method to compute regression coefficients which define
31 % the exercise policy.
32 [beta] = LSMregressioncoefficientsAntithetic(K,T,r,s,S0,N,d,M);
33

34 %% Generate new sample paths for lower bound
35 % Generate new independent sample paths. Each column corresponds to a
36 % different path.
37

38 % Initialise
39 S = zeros(d+1,2*N2);
40

41 S(1,:) = S0; % first entry is initial price
42

43 for i = 2:d+1;
44 Z = randn(1,N2);
45 Z = [Z,-Z]; % create antithetic pairs
46 S(i,:) = S(i-1,:).*exp((r - sˆ2/2)*dt + s*Z*sqrt(dt));
47 end
48

49 %% Calculate the payoff matrix
50 % h is the payoff matrix. Each column corresponds to the immediate payoffs
51 % along a path at each time. Note that time 0 is not included.
52 h = max(K-S(2:d+1,:),0);
53

54 %% Compute the continuation matrix
55 % Continuation matrix holds the continuation value at each time point for
56 % each sample path.
57 C = zeros(d,2*N2); % no time 0, but time d
58

59 for i = 1:d-1
60 % CHOOSE either basis polynomials or choice functions.
61 %D = generateBasisFunctions(S(i+1,:),M);
62 D = generateChoiceFunctions(S(i+1,:),M,K,(d-i)*dt,r,s);
63

64 % Using the regression coefficients we estimate the continuation

48



65 % values.
66 C(i,:) = D*beta(i+1,:)';
67 end
68

69 %% Compute low-biased simulation value
70 % Making use of a control variate to reduce variance.
71

72 controlVariate = zeros(1,2*N2); % stores the control variate values
73 Y = zeros(1,2*N2); % stores the simulation values
74

75 for n = 1:2*N2
76 % Find the first exercise time.
77 indx = find(h(:,n) >= C(:,n) & h(:,n)>0,1);
78

79 % If we exercise then set the simulation value and control variate
80 % value as that time point discounted back to 0.
81 if indx
82 Y(n) = exp(-r*dt*indx)*h(indx,n);
83 controlVariate(n) = ...
84 exp(-r*dt*indx)*BSput(K,(d-indx)*dt,r,s,S(indx+1,n));
85 end
86 end
87

88 % Use the control variate to compute a variance reduced simulation value.
89 meanControl = mean(controlVariate);
90 meanNormal = mean(Y);
91 covarianceEstimate = mean(Y.*controlVariate);
92 varianceEstimate = mean(controlVariate.ˆ2);
93 controlVariateConstant = -(covarianceEstimate - meanNormal*meanControl)/...
94 (varianceEstimate - meanControlˆ2);
95 Z = Y + controlVariateConstant*(controlVariate - europeanValue);
96

97 % Z contains the estimate for each sample. Taking the mean we obtain the
98 % Monte Carlo estimate.
99 lowerBound = mean(Z)

100 lowerStdError = std(Z)/sqrt(2*N2)
101

102 %% Calculate the European option values for each sample path
103 % Time 0 not included.
104 europeanValues = zeros(d,2*N2);
105

106 for i = 1:d
107 europeanValues(i,:) = BSput(K,(d-i)*dt,r,s,S(i+1,:));
108 end
109

110

111 %% Build the exercise indicator matrix
112 I = (h > europeanValues) & (h>0);
113 I(d,:) = h(d,:) > 0;
114

115 V = max(h,C); % option values at each time point
116 clear D Z;
117

118 %% Construct approximating martingale
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119 mart = zeros(d,2*N2); % no time 0
120 mart(1,:) = exp(-r*dt).*V(1,:); % set time 1 value
121

122 for i=1:d-1
123 % At each time step check which paths we need run sub simulations
124 timePaths = S(i+1,:); % the values at the current time
125

126 % Extract the paths we need to run sub-simulations for.
127 relaventTimePaths = timePaths(I(i,:));
128 subloopsNeeded = length(relaventTimePaths);
129

130 % For paths that don't require sub-simulations we set these as the
131 % discounted low-biased approximation values.
132 diff = zeros(1,2*N2);
133 tempV1 = V(i+1,:); % one time step ahead
134 tempV2 = V(i,:);
135 % Set the martingale difference as b(t+1)L(t+1) - btLt for paths not
136 % requiring sub-simulations.
137 diff(~I(i,:)) = ...
138 exp(-r*dt*(i+1)).*tempV1(~I(i,:)) - exp(-r*dt*i).*tempV2(~I(i,:));
139

140 % For paths requiring sub-simulations we run these and compute their
141 % Monte Carlo estimates for the continuation values.
142 means = zeros(1,subloopsNeeded);
143

144 for n=1:subloopsNeeded
145 % For each path that requires sub-simulations we launch N3
146 % sub-paths and compute the continuation values through a one-step
147 % expectation computation.
148 % Generate sub-paths one step ahead.
149 Z = randn(1,N3);
150 Z = [Z,-Z]; % create antithetic pairs
151 subS = relaventTimePaths(1,n).*exp((r-sˆ2/2)*dt + s*Z*sqrt(dt));
152

153 % Exercise values.
154 subH = max(K-subS,0);
155

156 if i==d-1
157 % If at the penultimate time step then one step ahead is
158 % maturity where there is no continatuation so set the
159 % expectation as the exercise value.
160 means(1,n) = mean(subH);
161 else
162 % If not at the penultimate time step then find the
163 % continuation values.
164

165 % CHOOSE either basis polynomials or choice functions.
166 %subD = generateBasisFunctions(subS(n,:),M);
167 subD = generateChoiceFunctions(subS,M,K,(d-i-1)*dt,r,s);
168

169 subC = (subD*beta(i+2,:)')'; % approximated continuation values
170 % Discounted option value.
171 subV = exp(-r*dt*(i+1)).*max(subH,subC);
172 means(1,n) = mean(subV); % monte carlo estimate
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173 end
174 end
175

176 % Calculate martingale difference for paths that required
177 % sub-simulations.
178 diff(I(i,:)) = exp(-r*dt*(i+1)).*tempV1(I(i,:))- means;
179

180 % Update martingale.
181 mart(i+1,:) = mart(i,:) + diff;
182 end
183 clear tempV1 tempV2 diff subD subC subH subV relaventTimePaths timePaths;
184

185 % Modify all the exercise values so they are discounted.
186 for i = 1:d
187 h(i,:) = exp(-r*dt*i).*h(i,:);
188 end
189

190 % Find the largest difference between the discounted payoffs and
191 % martingale.
192 diff = h - mart;
193 maximums = max(diff);
194

195 %% Compute high-biased simulation value
196 % Use control variate to reduce variance.
197 controlVariate = zeros(1,2*N2); % stores control variate values
198 Y = max(diff); % stores simulation values
199

200 for i = 1:2*N2
201 % Find first exercise time.
202 indx = find(h(:,i) >= C(:,i) & h(:,i)>0,1);
203 if indx
204 controlVariate(i) = exp(-r*dt*indx)*...
205 BSput(K,(d-indx)*dt,r,s,S(indx+1,i));
206 end
207 end
208

209 % Use the control variate to compute a variance reduced simulation value.
210 meanControl = mean(controlVariate);
211 meanNormal = mean(Y);
212 covarianceEstimate = mean(Y.*controlVariate);
213 varianceEstimate = mean(controlVariate.ˆ2);
214 controlVariateConstant = -(covarianceEstimate - meanNormal*meanControl)/...
215 (varianceEstimate - meanControlˆ2);
216 Z = Y + controlVariateConstant*(controlVariate - europeanValue);
217

218 % Z contains the estimate for each sample. Taking the mean we obtain the
219 % Monte Carlo estimate.
220 upperStdError = std(Z)/sqrt(2*N2)
221 upperBound = mean(Z) + lowerBound
222

223 % Construct confidence interval.
224 alpha = 0.05;
225 z = norminv(1-alpha/2);
226 CIlower = lowerBound - z*lowerStdError;
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227 CIupper = upperBound + z*sqrt(lowerStdErrorˆ2 + upperStdErrorˆ2);
228 CI = [CIlower,CIupper]
229

230 totaltime = toc
231

232 end

A.2.2 Proposed Algorithm 4.1 to Compute Positively and Negatively Biased
Results

1 function [europeanValue,lowerBound,lowerStdError,upperBound,...
2 upperStdError,martApproximation,totaltime] ...
3 = gameOptionBoundsPath(S0,d);
4 %% Game Option Bounds Valuation
5 % Function that calculates a high and low-biased approximation to the value
6 % of a game put option on single asset following a geometric Brownian
7 % motion. Variance reduction techniques (antithetic variates and control
8 % variates) are applied. A path-wise approximation is also produced using
9 % the approximating martingale.

10 % S0 = initial price
11 % d = number of time steps
12

13 tic; % start timer
14

15 %% Set up variables
16 K = 100; % strike price
17 T = 0.5; % maturity
18 r = 0.06; % interest
19 s = 0.4; % volatility (sigma)
20 N = 1*10ˆ4; % number of sample paths for coefficients
21 N2 = 5*10ˆ3; % number of sample paths for bound valuation
22 N3 = 5*10ˆ3; % number of sub-path loops
23 M = 4; % number of basis functions
24 dt = T/d; % size of each timestep
25 delta = 5; % penalty payoff
26

27 %% First find European value
28 europeanValue = BSput(K,T,r,s,S0)
29

30 %% Calculate regression coefficients
31 % Utilise the LSMVR method to compute regression coefficients which define
32 % the exercise policy.
33 [beta] = gameOptionCoefficients(K,T,r,s,S0,N,d,M,delta);
34

35 %% Generate new sample paths for lower bound
36 % Generate new independent sample paths. Each column corresponds to a
37 % different path.
38

39 % Initialise
40 S = zeros(d+1,2*N2);
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41

42 S(1,:) = S0; % first entry is initial price
43

44 for i = 2:d+1;
45 Z = randn(1,N2);
46 Z = [Z,-Z]; % create antithetic pairs
47 S(i,:) = S(i-1,:).*exp((r - sˆ2/2)*dt + s*Z*sqrt(dt));
48 end
49

50 %% Calculate the payoff matrix
51 % h is the payoff matrix. Each column corresponds to the immediate payoffs
52 % along a path at each time. Note that time 0 is not included.
53 h = max(K-S(2:d+1,:),0);
54 g = h + delta; % penalty matrix
55 g(d,:) = h(d,:); % take off penalty at maturity
56

57 %% Compute the continuation matrix
58 % Continuation matrix holds the continuation value at each time point for
59 % each sample path.
60 C = zeros(d,2*N2); % no time 0, but time d
61

62 for i = 1:d-1
63 % CHOOSE either basis polynomials or choice functions.
64 %D = generateBasisFunctions(S(i+1,:),M);
65 D = generateChoiceFunctions(S(i+1,:),M,K,(d-i)*dt,r,s);
66

67 % Using the regression coefficients we estimate the continuation
68 % values.
69 C(i,:) = D*beta(i+1,:)';
70 end
71

72 %% Find the LSMVR value
73 Y = zeros(1,2*N2);
74 for i = 1:2*N2
75 indx1 = find(h(:,i) >= C(:,i) & h(:,i)>0,1); % holder stopping time
76 indx2 = find(g(:,i) <= C(:,i),1); % writer stopping time
77

78 if isempty(indx1) == 1
79 % If holder doesn't stop then set to avoid crashing.
80 indx1 = d+1;
81 end
82

83 if isempty(indx2) == 1
84 % Writer always exercises at maturity.
85 indx2 = d;
86 end
87

88 % Now find the discounted stopped value of the option.
89 if indx1 <= indx2
90 Y(1,i) = exp(-r*dt*indx1)*h(indx1,i);
91 else
92 Y(1,i) = exp(-r*dt*indx2)*g(indx2,i);
93 end
94 end
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95 % Compute the Monte Carlo approximate to the LSMVR value.
96 lsmvrApprox = mean(Y);
97

98 %% Find the approximate sigma
99 sigma = zeros(1,2*N2); % stores estimated sigma for each path

100 for i = 1:2*N2
101 indx = find(g(:,i) <= C(:,i),1);
102 if indx
103 sigma(1,i) = indx; % stores the cancellation time
104 else
105 sigma(1,i) = d; % always exercise at maturity
106 end
107 end
108

109 %% Find the approximate tau
110 tau = zeros(1,2*N2); % stores estimated tau for each path
111 for i = 1:2*N2
112 indx = find(h(:,i) >= C(:,i) & h(:,i) > 0,1);
113 %indx = find(h(:,i) >= C(:,i),1);
114 if indx
115 tau(1,i) = indx; % stores the exercise time
116 else
117 tau(1,i) = d+1; % to avoid crashing
118 end
119 end
120

121 %% Build the exercise/cancellation indicator matrix
122 I = ((h >= C) & (h>0)) | (g <= C);
123 I(d,:) = 1; % writer always cancels at maturity
124 V = min(g,max(h,C)); % option values at each time point
125 clear D Z;
126

127 %% Construct approximating martingale
128 mart = zeros(d,2*N2); % no time 0
129 mart(1,:) = exp(-r*dt).*V(1,:); % set time 1 value
130

131 for i=1:d-1
132

133 % At each time step check which paths we need run sub simulations
134 timePaths = S(i+1,:); % the values at the current time
135

136 % Extract the paths we need to run sub-simulations for.
137 relaventTimePaths = timePaths(I(i,:));
138 subloopsNeeded = length(relaventTimePaths);
139

140 % For paths that don't require sub-simulations we set these as the
141 % discounted low-biased approximation values.
142 diff = zeros(1,2*N2);
143 tempV1 = V(i+1,:); % one time step ahead
144 tempV2 = V(i,:);
145 % Set the martingale difference as b(t+1)L(t+1) - btLt for paths not
146 % requiring sub-simulations.
147 diff(~I(i,:)) =...
148 exp(-r*dt*(i+1)).*tempV1(~I(i,:)) - exp(-r*dt*i).*tempV2(~I(i,:));
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149

150 % For paths requiring sub-simulations we run these and compute their
151 % Monte Carlo estimates for the continuation values.
152 means = zeros(1,subloopsNeeded);
153

154 for n=1:subloopsNeeded
155 % For each path that requires sub-simulations we launch N3
156 % sub-paths and compute the continuation values through a one-step
157 % expectation computation.
158 % Generate sub-paths one step ahead.
159 Z = randn(1,N3);
160 Z = [Z,-Z]; % create antithetic pairs
161 subS = relaventTimePaths(1,n).*exp((r-sˆ2/2)*dt + s*Z*sqrt(dt));
162

163 % Exercise values.
164 subH = max(K-subS,0);
165 % Cancellation values.
166 subG = subH + delta;
167

168 if i==d-1
169 % If at the penultimate time step then one step ahead is
170 % maturity where there is no continatuation so set the
171 % expectation as the exercise value.
172 means(1,n) = mean(subH);
173 else
174 % If not at the penultimate time step then find the
175 % continuation values.
176

177 % CHOOSE either basis polynomials or choice functions.
178 %subD = generateBasisFunctions(subS,M);
179 subD = generateChoiceFunctions(subS,M,K,(d-i-1)*dt,r,s);
180

181 subC = (subD*beta(i+2,:)')'; % approximated continuation values
182 % Discounted option value.
183 subV = exp(-r*dt*(i+1)).*min(subG,max(subH,subC));
184 means(1,n) = mean(subV); % monte carlo estimate
185 end
186 end
187

188 % Calculate martingale difference for paths that required
189 % sub-simulations.
190 diff(I(i,:)) = exp(-r*dt*(i+1)).*tempV1(I(i,:))- means;
191

192 % Update martingale.
193 mart(i+1,:) = mart(i,:) + diff;
194 end
195 clear tempV1 tempV2 diff subD subC subH subV relaventTimePaths timePaths;
196

197 % Modify all the exercise/cancellation values so they are discounted.
198 for i = 1:d
199 h(i,:) = exp(-r*dt*i).*h(i,:);
200 g(i,:) = exp(-r*dt*i).*g(i,:);
201 end
202
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203 %% Calculate Path-Wise Approximation
204 % Calculate R(s,t) and M(s,t) for each time point t = 1,...,d
205 % and s = 1,...,d
206 Rt = zeros(d,2*N2);
207 Rs = zeros(d,2*N2);
208 for s = 1:d
209 % At each time step we set the immediate option value and martingale
210 % value.
211 martTemp = mart;
212 Rt(1:s,:) = h(1:s,:); % equals t times as t<= s
213

214 if s~= d
215 % If not at maturity then let the future times as the stopped
216 % cancellation value and stop the martingale.
217 for j = s+1:d
218 Rt(j,:) = g(s,:); % now t > s, so stopped at s
219 martTemp(j,:) = martTemp(s,:); % stop martingale
220 end
221 end
222 tempDiff = Rt - martTemp; % find differences
223 tempTMax = max(tempDiff); % take the maximum difference for each path
224 Rs(s,:) = tempTMax;
225 end
226

227 % Now take minimums.
228 pathMinimums = min(Rs);
229

230 % Compute Monte Carlo estimate.
231 martApproximation = mean(pathMinimums) + lsmvrApprox
232 martStdError = std(pathMinimums)/sqrt(2*N2)
233

234 %% Calculate Bounds
235 % Calculate R(s,t) and M(s,t) for each time point t = 1,...,d but this time
236 % stopping at the approximate exercise times.
237 R = zeros(d,2*N2); % payoff matrix for upper bound, no time 0
238 R2 = zeros(d,2*N2); % payoff matrix for lower bound, no time 0
239 mart2 = mart; % create a copy to use for lower bound
240

241 for n = 1:2*N2
242 % For each sample path stop the processes at the approximate sigma.
243 sindx = sigma(n); % approximate sigma
244 if sindx < d
245 % Stop martingale at sigma.
246 mart(sindx+1:d,n) = mart(sindx,n);
247 % Stop payoff process at sigma.
248 R(sindx+1:d,n) = g(sindx,n);
249 end
250 % Set payoff process as exercise price before sigma.
251 R(1:sindx,n) = h(1:sindx,n);
252

253 % For each sample path stop the processes at the approximate tau.
254 tindx = tau(n); % approximate tau
255 if tindx < d+1
256 % Stop martingale at tau.
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257 mart2(tindx:d,n) = mart2(tindx,n);
258 % Stop payoff process at tau.
259 R2(tindx:d,n) = h(tindx,n);
260 end
261 % Set payoff process as cancellation price before tau.
262 if tindx > 1
263 R2(1:tindx-1,n) = g(1:tindx-1,n);
264 end
265 end
266

267 % Calculate upper bound.
268 diff = R - mart;
269 maximums = max(diff); % maximum difference for each path
270 upperBound = mean(maximums) + lsmvrApprox % monte carlo estimate
271 upperStdError = std(maximums)/sqrt(2*N2)
272

273 % Calculate lower bound.
274 diff2 = R2 - mart2;
275 minimums = min(diff2); % minimum difference for each path
276 lowerBound = mean(minimums) + lsmvrApprox % monte carlo estimate
277 lowerStdError = std(minimums)/sqrt(2*N2)
278

279 difference = upperBound - lowerBound
280

281 % Construct confidence interval.
282 alpha = 0.05;
283 z = norminv(1-alpha/2);
284 CIlower = lowerBound - z*lowerStdError;
285 CIupper = upperBound + z*upperStdError;
286 CI = [CIlower,CIupper]
287

288 totaltime = toc
289

290 end
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